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If P is a probability distribution (rather than a general measure), then two more
special cases of interest are obtained for particular choices of functions f in (B.15).
If f is the identity on RN, we get the expectation E[x]. If f(x) = (x — E[x])* (on
R), we obtain the variance of x, denoted by var(x). In the N-dimensional case, the
functions f;;(x) = (x; — E[x;])(x; — E[x;]) lead to the covariance cov(x;, x;). For a data
set {x1,...,x,}, the matrix (cov(x;, x 1))ij is called the covariance matrix.

B.1.4 Stochastic Processes

A stochastic process y on a set X is a random quantity indexed by x € X. This means
that for every x, we get a random quantity y(x) taking values in R, or more gener-
ally, in a set R. A stochastic process is characterized by the joint probability distri-
butions of y on arbitrary finite subsets of X; in other words, of (y(x1),. .., y(xm)).ll

A Gaussian process is a stochastic process with the property that for any
{x1,...,xm} C X, the random quantities (y(x1), ..., y(x,;)) have a joint Gaussian
distribution with mean p and covariance matrix K. The matrix elements K;; are
given by a covariance kernel k(x;, x).

When a Gaussian process is used for learning, the covariance function k(x;, x;) :=
cov(y(x;), y(x;)) essentially plays the same role as the kernel in a SVM. See Section
16.3 and [587, 596] for further information.

B.2 Linear Algebra

B.2.1 Vector Spaces

We move on to basic concepts of linear algebra, which is to say the study of
vector spaces. Additional detail can be found in any textbook on linear algebra
(e.g., [170]). The feature spaces studied in this book have a rich mathematical
structure, which arises from the fact that they allow a number of useful operations
to be carried out on their elements: addition, multiplication with scalars, and the
product between the elements themselves, called the dot product.

What's so special about these operations? Let us, for a moment, go back to our
earlier example (Chapter 1), where we classify sheep. Surely, nobody would come
up with the idea of trying to add two sheep, let alone compute their dot product.
The set of sheep does not form a vector space; mathematically speaking, it could
be argued that it does not have a very rich structure. However, as discussed in
Chapter 1 (cf. also Chapter 2), it is possible to embed the set of all sheep into a
dot product space such that we can think of the dot product as a measure of

11. Note that knowledge of the finite-dimensional distributions (fdds) does not yield com-
plete information on the properties of the sample paths of the stochastic process; two dif-
ferent processes which have the same fdds are known as versions of one another.
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the similarity of two sheep. In this space, we can perform the addition of two
sheep, multiply sheep with numbers, compute hyperplanes spanned by sheep,
and achieve many other things that mathematicians like.

Definition B.4 (Real Vector Space) A set HH is called a vector space (or linear space)
over R if addition and scalar multiplication are defined, and satisfy (for all x,x',x" € H,
and A\, \' € R)

x+ & +x")=x+x)+x", (B.19)
x+x =x+xeXH, (B.20)
0eX, x+0=x, (B.21)
—xeH, —x+x=0, (B.22)
Ax € K, (B.23)
1x = x, (B.24)
ANx) = AN)x, (B.25)
Ax+x) = Ax+ XX, (B.26)
A+ XN)x = Ax+ Nx. (B.27)

The first four conditions amount to saying that (3, +) is a commutative group.12

We have restricted ourselves to vector spaces over R. The definition in the complex
case is analogous, both here and in most of what follows. Any non-empty subset
of H that is itself a vector space is called a subspace of H.

Among the things we can do in a vector space are linear combinations,

m

E )\in’, where A € R,x; € H, (B28)
=1

and convex combinations,

m

E Aix;, where \; >0, EAi =1,x; € H. (B.29)
1=1 1

The set {3/"; A\ix;|A; € R} is referred to as the span of the vectors x, ..., Xy.

A set of vectors x;, chosen such that none of the x; can be written as a linear
combination of the others, is called linearly independent. A set of vectors x; that
allows us to uniquely write each element of H as a linear combination is called a
basis of H. For the uniqueness to hold, the vectors have to be linearly independent.
All bases of a vector space H have the same number of elements, called the
dimension of J.

The standard example of a finite-dimensional vector space is RY, the space
of column vectors ([x]y,...,[x]y)", where the T denotes the transpose. In RY,

12. Note that (B.21) and (B.22) should be read as existence statements. For instance, (B.21)
states that there exists an element, denoted by 0, with the required property.
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addition and scalar multiplication are defined element-wise. The canonical basis
of RN is {eq,...,ex}, where for j =1,...,N, [e;]; = §;;. Here §;; is the Kronecker
symbol;

1 ifie i
5ij = HE= (B.30)
0 otherwise.

A somewhat more abstract example of a vector space is the space of all real-
valued functions on a domain X, denoted by R*. Here, addition and scalar multi-
plication are defined by

(f + 9)x) == f(x) + g(x), (B.31)
ANH) == Af(x). (B.32)

We shall return to this example below.

Linear algebra is the study of vector spaces and linear maps (sometimes called
operators) between vector spaces. Given two real vector spaces H; and H,, the
latter are maps

L:3 — 3, (B.33)
that for all x,x’ € H, A\, A’ € R satisfy
L(Ax+ A'x') = AL(x) + N'L(X). (B.34)

It is customary to omit the parentheses for linear maps; thus we normally write Lx
rather than L(x).

Let us go into more detail, using (for simplicity) the case where H; and 3, are
identical, have dimension N, and are written . Due to (B.34), a linear map L is
completely determined by the values it takes on a basis of . This can be seen by
writing an arbitrary input as a linear combination in terms of the basis vectors e},
and then applying L;

N N
LY Xiei= Y \iLe,. (B.35)
]:El e ]:21 jLe;

The image of each basis vector, Le;, is in turn completely determined by its expan-
sion coefficients A;;, i =1,...,N;

N
Le]- = 21 Ai]-ei. (B36)

The coefficients (A;;) form the matrix A of L with respect to the basis {ey,...,ex}.
We often think of linear maps as matrices in the first place, and use the same
symbol to denote them. The unit (or identity) matrix is denoted by 1. Occasionally,
we also use the symbol 1 as the identity map on arbitrary sets (rather than vector
spaces).

In this book, we assume elementary knowledge of matrix algebra, including the
matrix product, corresponding to the composition of two linear maps,
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N
(AB)z] = E Aianja (B.37)
n=1

and the transpose (A7) == Aj;.

The inverse of a matrix A is written A1 and satisfies AA™!' = A~1A = 1. The
pseudo-inverse Al satisfies AATA = A. While every matrix has a pseudo-inverse,
not all have an inverse. Those which do are called invertible or nonsingular, and
their inverse coincides with the pseudo-inverse. Sometimes, we simply use the
notation A1, and it is understood that we mean the pseudo-inverse whenever A
is not invertible.

B.2.2 Norms and Dot Products
Thus far, we have explained the linear structure of spaces such as the feature space

induced by a kernel. We now move on to the metric structure. To this end, we
introduce concepts of length and angles.

Definition B.5 (Norm) A function || - || : 5 — R that for all x,x' € H and X\ € R

satisfies
[ 4[| < [l =+ [ (B.38)
[[Ax[ = AT, (B.39)
x|l > 0 ifx 0, (B.40)

is called a norm on . If we replace the “>" in (B.40) by “>,” we are left with what is
called a semi-norm.

Any norm defines a metric d via
d(x,x') := ||[x — X||; (B.41)

likewise, any semi-norm defines a semi-metric. The (semi-)metric inherits certain
properties from the (semi-)norm, in particular the triangle inequality (B.39) and
positivity (B.40).

While every norm gives rise to a metric, the converse is not the case. In this
sense, the concept of the norm is stronger. Similarly, every dot product (to be
introduced next) gives rise to a norm, but not vice versa.

Before describing the dot product, we start with a more general concept.

Definition B.6 (Bilinear Form) A bilinear form on a vector space 3 is a function
Q:HxH—-R

(x,x") = Qx,x") (B.42)
with the property that for all x,x',x" € H and all X, \' € R, we have

Q(x+ X'x),x") = AQ(x,x") + AN'Q(x', x"), (B.43)
QK", (Ax+ A'X)) = AQK", %) + N'Q(x", x). (B.44)
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If the bilinear form also satisfies
Q(x,x) = Q(',x) (B.45)

for all x,x" € H, it is called symmetric.

Definition B.7 (Dot Product) A dot product on a vector space H is a symmetric
bilinear form,

()i HXxH—->R
(x,x') = (x,x'), (B.46)

that is strictly positive definite; in other words, it has the property that for all x € H,
(x,x) > 0 with equality only for x = 0. (B.47)

Definition B.8 (Normed Space and Dot Product Space) A normed space is a vec-
tor space endowed with a norm; a dot product space (sometimes called pre-Hilbert
space) is a vector space endowed with a dot product.

Any dot product defines a corresponding norm via

x| = 4/ {x,%). (B.48)

We now describe the Cauchy-Schwarz inequality: For all x,x’ € X,
| 06X | < XX, (B.49)

with equality occurring only if x and X" are linearly dependent. In some instances,
the left hand side can be much smaller than the right hand side. An extreme case
is when x and x' are orthogonal, and (x,x’) = 0.

One of the most useful constructions possible in dot product spaces are orthonor-
mal basis expansions. Suppose ey, ..., ey, where N € N, form an orthonormal set; that
is, they are mutually orthogonal and have norm 1. If they also form a basis of K,
they are called an orthonormal basis (ONB). In this case, any x € H can be written
as a linear combination,

N

X = 2 (x,e;)e;. (B.50)

=1

The standard example of a dot product space is again RN. We usually employ
the canonical dot product,

N

(x,x') 1= E[x]i[x']i =x'x, (B.51)
=1

and refer to RY as the Euclidean space of dimension N. Using this dot product and

the canonical basis of RV, each coefficient (x, e;) in (B.50) just picks out one entry
from the column vector x, thus x = Eﬁ-\’zl[x] i€
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A rather useful result concerning norms arising from dot products is the
Pythagorean Theorem. In its general form, it reads as follows:

Theorem B.9 (Pythagoras) If e1, ..., e, are orthonormal (they need not form a basis),
then
2

q
IXI? = (xe)* + (B.52)

=1

q
X — E (x,e;)e;
fs

Now that we have a dot product, we are in a position to summarize a number of
useful facts about matrices.

= Jt can readily be verified that for the canonical dot product, we have
(x, AX") = <ATx,x’> (B.53)

for all x,x' € K

= Matrices A such that A = AT are called symmetric. Due to (B.53), they can
be swapped between the two arguments of the canonical dot product without
changing its value

= Symmetric matrices A that satisfy
(x, Ax) > 0 (B.54)

for all x € 3 are called positive definite (cf. Remark 2.16 for a note on this terminol-
ogy)

= Another interesting class of matrices are the unitary (or orthogonal) matrices. A
unitary matrix U is characterized by an inverse U~! that equals its transpose U .
Unitary matrices thus satisfy

(Ux, Ux') = <UTLIx,x'> = (U Ux,X) = (x,X) (B.55)

for all x,x" € J; in other words, they leave the canonical dot product invariant

= A final aspect of matrix theory of interest in machine learning is matrix diago-
nalization. Suppose A is a linear operator. If there exists a basis vy,...,vy of 3
such that foralli=1,...,N,

AVi = )\,-vi, (B56)

with A; € R, then A can be diagonalized: written in the basis vi,...,vy, we have
Ajj=0foralli# jand A; = ) for all i. The coefficients ); are called eigenvalues,
and the v; eigenvectors, of A

Let us now consider the special case of symmetric matrices. These can always
be diagonalized, and their eigenvectors can be chosen to form an orthonormal
basis with respect to the canonical dot product. If we form a matrix V with these
eigenvectors as columns, then we obtain the diagonal matrix as VAV,

Rayleigh’s principle states that the smallest eigenvalue A, coincides with the
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minimum of

R(v) = V2 AY) (B.57)
{v,v)

The minimizer of R is an eigenvector with eigenvalue Apn,. Likewise, the largest

eigenvalue and its corresponding eigenvector can be found by maximizing R.

Functions f : I — R, where I C R, can be defined on symmetric matrices A with

eigenvalues in I. To this end, we diagonalize A and apply f to all diagonal

elements (the eigenvalues).

Since a symmetric matrix is positive definite if and only if all its eigenvalues are

nonnegative, we may choose f(x) = /x to obtain the unique square root v/ A of a

positive definite matrix A.

Many statements about matrices generalize in some form to operators on spaces
of arbitrary dimension; for instance, Mercer’s theorem (Theorem 2.10) can be
viewed as a generalized version of a matrix diagonalization, with eigenvectors
(or eigenfunctions) v; satisfying [y k(x, x")1b;(x") dpu(x') = Xjpp;(x).

B.3 Functional Analysis

Cauchy Sequence

Banach / Hilbert
Space

Functional analysis combines concepts from linear algebra and analysis. Conse-
quently, it is also concerned with questions of convergence and continuity. For a
detailed treatment, cf. [429, 306, 112].

Definition B.10 (Cauchy Sequence) A sequence (x;); == (X;)ien = (X1,X2,...) in a
normed space H is said to be a Cauchy sequence if for every € > 0, there exists an n € N
such that for all n',n" > n, we have ||x,; — x| < €.

A Cauchy sequence is said to converge to a point x € H if ||x, —x|| = 0as n — oco.

Definition B.11 (Completeness, Banach Space, Hilbert Space) A space H is called
complete if all Cauchy sequences in the space converge.

A Banach space is a complete normed space; a Hilbert space is a complete dot product
space.

The simplest example of a Hilbert space (and thus also of a Banach space) is
again RY. More interesting Hilbert spaces, however, have infinite dimensionality.
A number of surprising things can happen in this case. To prevent the nasty ones,
we generally assume that the Hilbert spaces we deal with are separable,'3 which
means that there exists a countable dense subset. A dense subset is a set S such that
each element of J is the limit of a sequence in S. Equivalently, the completion of

13. One of the positive side effects of this is that we essentially only have to deal with one
Hilbert space: all separable Hilbert spaces are equivalent, in a sense that we won't define
presently.



