
B Mathematical Prerequisites

The beginner. . . should not be discouraged if. . . he finds that he does not have the prerequi-
sites for reading the prerequisites.

P. Halmos1

In this chapter, we introduce mathematical results that might not be known to
all readers, but which are sufficiently standard that they not be put into the actual
chapters.
This exposition is almost certainly incomplete, and some readers will inevitably

happen upon terms in the book that are unknown to them, yet not explained here.
Consequently, we also give some further references.

B.1 Probability

B.1.1 Probability Spaces

Let us start with some basic notions of probability theory. For further detail, we
refer to [77, 165, 561]. We do not try to be rigorous; instead, we endeavor to give
some intuition and explain how these concepts are related to our present interests.
Assumewe are given a nonempty set�, called the domain or universe. We refer toDomain

the elements x of � as patterns. The patterns are generated by a stochastic source.
For instance, they could be handwritten digits, which are subject to fluctuations in
their generation best modelled probabilistically. In the terms of probability theory,
each pattern x is considered the outcome of a random experiment.
We would next like to assign probabilities to the patterns. We naively think of

a probability as being the limiting frequency of a pattern; in other words, how
often, relative to the number of trials, a certain pattern x comes up in a random
experiment, if we repeat this experiment infinitely often?
It turns out to be convenient to be slightly more general, and to talk about the

probability of sets of possible outcomes; that is, subsets C of � called events. WeEvent
denote the probability that the outcome of the experiment lies in C byProbability

1. Quoted after [429].
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P�x � C�� (B.1)

If ϒ is a logical formula in terms of x, meaning a mapping from � to � true� false�,
then it is sometimes convenient to talk about the probability of ϒ being true. We
will use the same symbol P in this case, and define its usage as

P�ϒ(x)� :� P�x � C� where C � �x � ��ϒ(x) � true�� (B.2)

Let us also introduce the shorthand

P(C) :� P�x � C�� (B.3)

to be read as “the probability of the event C.” If P satisfies some fairly natural
conditions, it is called a probability measure. It is also referred to as the (probability)
distribution of x.Distribution of x
In the case where�� �

N , the patterns are usually referred to as random variables
(N � 1) or random vectors (N � 1). A generic termwe shall sometimes use is random
quantity.2

To emphasize the fact that P is the distribution of x, we sometimes denote it as
Px or P(x).3 To give the precise definition of a probability measure, we first need to
be a bit more formal about which sets C we are going to allow. Certainly,

C � � (B.4)

should be a possibility, corresponding to the event that necessarily occurs (“sure
thing”). If C is allowed, then its complement,

C :� � � C� (B.5)

should also be allowed. This corresponds to the event “not C.” Finally, if C1�C2� � � �
are events, then we would like to be able to talk about the probability of the event
“C1 or C2 or . . . ”, hence
��
i�1

Ci (B.6)

should be an allowed event.

Definition B.1 (�-Algebra) A collection � of subsets of � is called a �-algebra on � if�-Algebra

(i) � � �; in other words, (B.4) is one of its elements;

(ii) it is closed under complementation, meaning if C � �, then also (B.5); and

(iii) it is closed under countable4 unions: if C1�C2� � � � � �, then also (B.6).

2. For simplicity, we are somewhat sloppy in not distinguishing between a random variable
and the values it takes. Likewise, we deviate from standard usage in not having introduced
random variables as functions on underlying universes of events.
3. The latter is somewhat sloppy, as it suggests that P takes elements of � as inputs, which
it does not: P is defined for subsets of �.
4. Countable means with a number of elements not larger than that of � . Formally, a set
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The elements of a �-algebra are sometimes referred to asmeasurable sets.

We are now in a position to formalize our intuitions about the probability measure.

Definition B.2 (Probability Measure) Let � be a �-algebra on the domain �. A func-
tion

P : �� [0� 1] (B.7)

is called a probability measure if it is normalized,Probability
Measure

P(�) � 1� (B.8)

and �-additive, meaning that for sets C1�C2� � � � � � that are mutually disjoint (Ci �Cj �
	 if i 
� j), we have

P

�
��
i�1

Ci

�
�

�

∑
i�1
P(Ci)� (B.9)

As an aside, note that if we drop the normalization condition, we are left with
what is called a measure.Measure
Taken together, (����P) are called a probability space. This is the mathematicalProbability Space

description of the probabilistic experiment.

B.1.2 IID Samples

Nevertheless, we are not quite there yet, since most of the probabilistic statements
in this book do not talk about the outcomes of the experiment described by
(����P). For instance, when we are trying to learn something about a regularity
(that is, about some aspects of P) based on a collection of patterns x1� � � � � xm � �
(usually called a sample), we actually perform the random experiment m times,Sample
under identical conditions. This is referred to as drawing an iid (independent and
identically distributed) sample from P.IID Sample
Formally, drawing an iid sample can be described by the probability space

(�m��m�Pm). Here, �m denotes the m-fold Cartesian product of �with itself (thus,
each element of �m is an m-tuple of elements of �), and �m denotes the smallest �-
algebra that contains the elements of the m-fold Cartesian product of �with itself.
Likewise, the product measure Pm is determined uniquely by

Pm((C1� � � � �Cm)) :�
m

∏
i�1
P(Ci)� (B.10)

Note that the independence of the “iid” is encoded in (B.10) being a product of
measures on �, while the identicality lies in the fact that all the measures on � are
one and the same.

is countable if there is a surjective map from � onto this set; that is, a map with range
encompassing the whole set.
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By analogy to (B.2), we sometimes talk about the probability of a logical formula
involving an m-sample,5

P�ϒ(x1� � � � � xm)� :� Pm(�(x1� � � � � xm) � �m�ϒ(x1� � � � � xm) � true�)� (B.11)

So far, we have denoted the outcomes of the random experiments as x for
simplicity, and have referred to them as patterns. In many cases studied in this
book, however, we will not only observe patterns x � � but also targets y � �.
For instance, in binary pattern recognition, we have � � ��1�. The underlying
regularity is now assumed to generate examples (x� y). All of the above applies to
this case, with the difference that we now end up with a probability measure on
�� �, called the (joint) distribution of (x� y).

B.1.3 Densities and Integrals

We now move on to the concept of a density, often confused with the distribution.
For simplicity, we restrict ourselves to the case where �� �

N ; in this instance, � is
usually taken to be the Borel �-algebra.6

Definition B.3 (Density) We say that the nonnegative function p is the density of the
distribution P if for all C � �,

P(C) �
�
C
p(x)dx� (B.12)

If such a p exists, it is uniquely determined.7

Not all distributions actually have a density. To see this, let us consider a distri-
bution that does. If we plug a set of the form C � �x� into (B.12), we see that
P(�x�) � 0; that is, the distribution assigns zero probability to any set of the form
�x�. We infer that only distributions that assign zero probability to individual
points can have densities.8

It is important to understand the difference between distributions and densities.
The distribution takes sets of patterns as inputs, and assigns them a probability
between 0 and 1. The density takes an individual pattern as its input, and assigns
a nonnegative number (possibly larger than 1) to it. Using (B.12), the density can be
used to compute the probability of a set C. If the density is a continuous function,
and we use a small neighborhood of point x as the set C, then P is approximately

5. Note that there is some sloppiness in the notation: strictly speaking, we should denote
this quantity as Pm — usually, however, it can be inferred from the context that we actually
mean the m-fold product measure.
6. Readers not familiar with this concept may simply think of it as a collection that contains
all “reasonable” subsets of �N .
7. Almost everywhere; in other words, up to a set N with P(N) � 0.
8. In our case, we can show that the distribution P has a density if and only if it is absolutely
continuouswith respect to the Lebesguemeasure on � N , meaning that every set of Lebesgue-
measure zero also has P-measure zero.



B.1 Probability 579

the size (i.e. , the measure) of the neighborhood times the value of p; in this case,
and in this sense, the two quantities are proportional.
A more fundamental concept, which exists for every distribution of a random

quantity taking values in �N , is the distribution function,9Distribution
Function

F : � N � [0� 1] (B.13)

z 
� F(z) � P�[x]1 � [z]1 � � � �� [x]N � [z]N�� (B.14)

Finally, we need to introduce the notion of an integral with respect to a measure.
Consider a function f : �N � � . We denote by�
C
f (x)dP(x) (B.15)

the integral of a function with respect to the distribution (or measure) P, provided
that f is measurable. For our purposes, the latter means that for every interval
[a� b] � � , f�1([a� b]) (the set of all points in �

N that get mapped to [a� b]) is an
element of �. Component-wise extension to vector-valued functions is straightfor-
ward.
In the case where P has a density p, (B.15) equals�
C
f (x)p(x)dx� (B.16)

which is a standard integral in �N , weighted by the density function p.
If P does not have a density, we can define the integral by decomposing the

range of f into disjoint half-open intervals [ai� bi), and computing the measure
of each set f�1([ai� bi)) using P. The contribution of each such set to the integral
is determined by multiplying this measure with the function value (on the set),
which by construction is in [ai� bi). The exact value of the integral is obtained by
taking the limit at infinitely small intervals. This construction, which is the basic
idea of the Lebesgue integral, does not rely on f being defined on � ; it works for
general sets � as long as they are suitably endowed with a measure.
Let us consider a special case. If P is the empirical measure with respect toEmpirical

Measure x1� � � � � xm,10

Pmemp(C) :�
�C� �x1� � � � � xm��

m
� (B.17)

which represents the fraction of points that lie in C, then the integral takes the form
�
C
f (x)dPmemp(x) �

1
m

m

∑
i�1
f (xi)� (B.18)

As an aside, note that this shows the empirical risk term (1.17) can actually be
thought of as an integral, just like the actual risk (1.18).

9. We use � to denote the logical “and” operation, and [z]i to denote the ithcomponent of z.
10. By ��� we denote the number of elements in a set.
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If P is a probability distribution (rather than a general measure), then two more
special cases of interest are obtained for particular choices of functions f in (B.15).
If f is the identity on �

N , we get the expectation E [x]. If f (x) � (x� E [x])2 (onExpectation,
Variance,
Covariance

� ), we obtain the variance of x, denoted by var(x). In the N-dimensional case, the
functions fi j(x)� (xi�E[xi])(xj�E[xj]) lead to the covariance cov(xi� xj). For a data
set �x1� � � � � xm�, the matrix (cov(xi� xj))i j is called the covariance matrix.

B.1.4 Stochastic Processes

A stochastic process y on a set � is a random quantity indexed by x � �. This means
that for every x, we get a random quantity y(x) taking values in � , or more gener-
ally, in a set �. A stochastic process is characterized by the joint probability distri-
butions of y on arbitrary finite subsets of �; in other words, of (y(x1)� � � � � y(xm)).11

A Gaussian process is a stochastic process with the property that for any
�x1� � � � � xm� � �, the random quantities (y(x1)� � � � � y(xm)) have a joint Gaussian
distribution with mean � and covariance matrix K. The matrix elements Kij are
given by a covariance kernel k(xi� xj).
When a Gaussian process is used for learning, the covariance function k(xi� xj) :�

cov(y(xi)� y(xj)) essentially plays the same role as the kernel in a SVM. See Section
16.3 and [587, 596] for further information.

B.2 Linear Algebra

B.2.1 Vector Spaces

We move on to basic concepts of linear algebra, which is to say the study of
vector spaces. Additional detail can be found in any textbook on linear algebra
(e.g., [170]). The feature spaces studied in this book have a rich mathematical
structure, which arises from the fact that they allow a number of useful operations
to be carried out on their elements: addition, multiplication with scalars, and the
product between the elements themselves, called the dot product.
What’s so special about these operations? Let us, for a moment, go back to our

earlier example (Chapter 1), where we classify sheep. Surely, nobody would come
up with the idea of trying to add two sheep, let alone compute their dot product.
The set of sheep does not form a vector space; mathematically speaking, it could
be argued that it does not have a very rich structure. However, as discussed in
Chapter 1 (cf. also Chapter 2), it is possible to embed the set of all sheep into a
dot product space such that we can think of the dot product as a measure of

11. Note that knowledge of the finite-dimensional distributions (fdds) does not yield com-
plete information on the properties of the sample paths of the stochastic process; two dif-
ferent processes which have the same fdds are known as versions of one another.


