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Figure 7.8 RBF centers automat-
ically computed by the Support
Vector algorithm (indicated by ex-
tra circles), using a Gaussian ker-
nel. The number of SV centers ac-
cidentally coincides with the num-
ber of identifiable clusters (indi-
cated by crosses found by k-means
clustering, with k � 2 and k� 3 for
balls and circles, respectively), but
the naive correspondence between
clusters and centers is lost; indeed,
3 of the SV centers are circles, and
only 2 of them are balls. Note that
the SV centers are chosen with re-
spect to the classification task to be
solved (from [482]).

algorithm was used to identify the centers (or hidden units) for the RBF network
(that is, as a replacement for k-means), exhibited a performance which was in
between the previous two. The study concluded that the SVM algorithm yielded
two advantages. First, it better identified good expansion patterns, and second, its
large margin regularizer led to second-layer weights that generalized better. We
should add, however, that using clever engineering, the classical RBF algorithm
can be improved to achieve a performance close to the one of SVMs [427].

7.5 Soft Margin Hyperplanes

So far, we have not said much about when the above will actually work. In
practice, a separating hyperplane need not exist; and even if it does, it is not
always the best solution to the classification problem. After all, an individual
outlier in a data set, for instance a pattern which is mislabelled, can crucially affect
the hyperplane. We would rather have an algorithm which can tolerate a certain
fraction of outliers.
A natural idea might be to ask for the algorithm to return the hyperplane

that leads to the minimal number of training errors. Unfortunately, it turns out
that this is a combinatorial problem. Worse still, the problem is even hard to
approximate: Ben-David and Simon [34] have recently shown that it is NP-hard to
find a hyperplane whose training error is worse by some constant factor than the
optimal one. Interestingly, they also show that this can be alleviated by taking
into account the concept of the margin. By disregarding points that are within
some fixed positive margin of the hyperplane, then the problem has polynomial
complexity.
Cortes and Vapnik [111] chose a different approach for the SVM, following [40].
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To allow for the possibility of examples violating (7.11), they introduced so-called
slack variables,Slack Variables

�i � 0� where i � 1� � � � �m� (7.33)

and use relaxed separation constraints (cf. (7.11)),

yi(�xi�w�� b) � 1� �i� i � 1� � � � �m� (7.34)

Clearly, by making �i large enough, the constraint on (xi� yi) can always be met. In
order not to obtain the trivial solution where all �i take on large values, we thus
need to penalize them in the objective function. To this end, a term ∑i �i is included
in (7.10).
In the simplest case, referred to as the C-SV classifier, this is done by solving, forC-SVC

some C � 0,

minimize
w������m

� (w� �) �
1
2
�w�2 �

C
m

m

∑
i�1

�i� (7.35)

subject to the constraints (7.33) and (7.34). It is instructive to compare this to
Theorem 7.3, considering the case � � 1. Whenever the constraint (7.34) is met
with �i � 0, the corresponding point will not be a margin error. All non-zero slacks
� correspond to margin errors; hence, roughly speaking, the fraction of margin
errors in Theorem 7.3 increases with the second term in (7.35). The capacity term,
on the other hand, increases with �w�. Hence, for a suitable positive constant C,
this approach approximately minimizes the right hand side of the bound.
Note, however, that if many of the �i attain large values (in other words, if the

classes to be separated strongly overlap, for instance due to noise), then ∑mi�1 �i can
be significantly larger than the fraction of margin errors. In that case, there is no
guarantee that the hyperplane will generalize well.
As in the separable case (7.15), the solution can be shown to have an expansion

w �
m

∑
i�1

�i yixi� (7.36)

where non-zero coefficients �i can only occur if the corresponding example (xi� yi)
precisely meets the constraint (7.34). Again, the problem only depends on dot
products in�, which can be computed by means of the kernel.
The coefficients �i are found by solving the following quadratic programming

problem:

maximize
���m

W(�) �
m

∑
i�1

�i �
1
2

m

∑
i� j�1

�i� j yiy jk(xi� xj)� (7.37)

subject to 0 � �i �
C
m
for all i � 1� � � � �m� (7.38)

and
m

∑
i�1

�i yi � 0� (7.39)

To compute the threshold b, we take into account that due to (7.34), for Support
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Vectors xj for which � j � 0, we have (7.31). Thus, the threshold can be obtained by
averaging (7.32) over all Support Vectors x j (recall that they satisfy � j � 0) with
� j � C.
In the above formulation, C is a constant determining the trade-off between

two conflicting goals: minimizing the training error, and maximizing the margin.
Unfortunately, C is a rather unintuitive parameter, and we have no a priori way
to select it.9 Therefore, a modification was proposed in [481], which replaces C by
a parameter 	 ; the latter will turn out to control the number of margin errors and	-SVC
Support Vectors.
As a primal problem for this approach, termed the 	-SV classifier, we consider

minimize
w������m ���b��

� (w� �� �) �
1
2
�w�2 � 	��

1
m

m

∑
i�1

�i (7.40)

subject to yi(�xi�w�� b) � �� �i (7.41)

and �i � 0� � � 0� (7.42)

Note that no constant C appears in this formulation; instead, there is a parameter
	 , and also an additional variable � to be optimized. To understand the role of
�, note that for � � 0, the constraint (7.41) simply states that the two classes are
separated by the margin 2�
�w� (cf. Problem 7.4).
To explain the significance of 	 , let us first recall the term margin error: by this,Margin Error

we denote points with �i � 0. These are points which are either errors, or lie within
the margin. Formally, the fraction of margin errors is

R�

emp[g] :�
1
m
��i�yig(xi) � �	� � (7.43)

Here, g is used to denote the argument of the sgn in the decision function (7.25):
f � sgn Æg. We are now in a position to state a result that explains the significance
of 	 .	-Property

Proposition 7.5 ([481]) Suppose we run 	-SVC with k on some data with the result that
� � 0. Then

(i) 	 is an upper bound on the fraction of margin errors.

(ii) 	 is a lower bound on the fraction of SVs.

(iii) Suppose the data (x1� y1)� � � � � (xm� ym) were generated iid from a distribution
P(x� y) � P(x)P(y�x), such that neither P(x� y � 1) nor P(x� y � �1) contains any dis-
crete component. Suppose, moreover, that the kernel used is analytic and non-constant.
With probability 1, asymptotically, 	 equals both the fraction of SVs and the fraction of
errors.

The proof can be found in Section A.2.
Before we get into the technical details of the dual derivation, let us take a look

9. As a default value, we use C�m � 10 unless stated otherwise.
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Figure 7.9 Toy problem (task: separate circles from disks) solved using �-SV classification,
with parameter values ranging from � � 0�1 (top left) to � � 0�8 (bottom right). The larger
we make �, the more points are allowed to lie inside the margin (depicted by dotted lines).
Results are shown for a Gaussian kernel, k(x� x�) � exp(��x� x��2).

Table 7.1 Fractions of errors and SVs, along with the margins of class separation, for the
toy example in Figure 7.9.
Note that � upper bounds the fraction of errors and lower bounds the fraction of SVs, and
that increasing �, i.e., allowing more errors, increases the margin.

� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
fraction of errors 0.00 0.07 0.25 0.32 0.39 0.50 0.61 0.71
fraction of SVs 0.29 0.36 0.43 0.46 0.57 0.68 0.79 0.86
margin ���w� 0.005 0.018 0.115 0.156 0.364 0.419 0.461 0.546

at a toy example illustrating the influence of 	 (Figure 7.9). The corresponding
fractions of SVs and margin errors are listed in table 7.1.
The derivation of the 	-SVC dual is similar to the above SVC formulations, onlyDerivation of the

Dual slightly more complicated. We consider the Lagrangian

L(w� �� b� ������ Æ)�
1
2
�w�2 � 	��

1
m

m

∑
i�1

�i

�
m

∑
i�1
(�i(yi(�xi�w�� b)� �� �i)� �i�i)� Æ�� (7.44)

using multipliers �i� �i� Æ � 0. This function has to be minimized with respect to
the primal variables w� �� b� �, and maximized with respect to the dual variables
���� Æ. To eliminate the former, we compute the corresponding partial derivatives
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and set them to 0, obtaining the following conditions:

w �
m

∑
i�1

�i yixi� (7.45)

�i � �i � 1
m� (7.46)
m

∑
i�1

�i yi � 0� (7.47)

m

∑
i�1

�i � Æ � 	� (7.48)

Again, in the SV expansion (7.45), the �i that are non-zero correspond to a con-
straint (7.41) which is precisely met.
Substituting (7.45) and (7.46) into L, using �i� �i� Æ � 0, and incorporating ker-

nels for dot products, leaves us with the following quadratic optimization problem
for 	-SV classification:Quadratic

Program
for 	-SVC maximize

���m
W(�) � �

1
2

m

∑
i� j�1

�i� j yi y jk(xi� xj)� (7.49)

subject to 0 � �i �
1
m
� (7.50)

m

∑
i�1

�i yi � 0� (7.51)

m

∑
i�1

�i � 	� (7.52)

As above, the resulting decision function can be shown to take the form

f (x) � sgn

�
m

∑
i�1

�i yik(x� xi)� b

�
� (7.53)

Compared with the C-SVC dual (7.37), there are two differences. First, there is an
additional constraint (7.52).10 Second, the linear term ∑mi�1 �i no longer appears in
the objective function (7.49). This has an interesting consequence: (7.49) is now
quadratically homogeneous in �. It is straightforward to verify that the same
decision function is obtained if we start with the primal function

� (w� �� �)�
1
2
�w�2 �C

�
�	��

1
m

m

∑
i�1

�i

�
� (7.54)

10. The additional constraint makes it more challenging to come up with efficient training
algorithms for large datasets. So far, two approaches have been proposed which work well.
One of them slightly modifies the primal problem in order to avoid the other equality con-
straint (related to the offset b) [98]. The other one is a direct generalization of a correspond-
ing algorithm for C-SVC, which reduces the problem for each chunk to a linear system, and
which does not suffer any disadvantages from the additional constraint [407, 408]. See also
Sections 10.3.2, 10.4.3, and 10.6.3 for further details.
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i.e., if one does use C, cf. Problem 7.16.
To compute the threshold b and the margin parameter �, we consider two

sets S�, of identical size s � 0, containing SVs xi with 0 � �i � 1 and yi � 
1,
respectively. Then, due to the KKT conditions, (7.41) becomes an equality with
�i � 0. Hence, in terms of kernels,

b � �
1
2s ∑

x�S��S�

m

∑
j�1

� j y jk(x� xj)� (7.55)

� �
1
2s

�
∑
x�S�

m

∑
j�1

� j y jk(x� xj)� ∑
x�S

�

m

∑
j�1

� j y jk(x� xj)
�
� (7.56)

Note that for the decision function, only b is actually required.
A connection to standard SV classification, and a somewhat surprising interpre-Connection

	-SVC — C-SVC tation of the regularization parameter C, is described by the following result:

Proposition 7.6 (Connection 	-SVC— C-SVC [481]) If 	-SV classification leads to
� � 0, then C-SV classification, with C set a priori to 1
�, leads to the same decision
function.

Proof If we minimize (7.40), and then fix � to minimize only over the remaining
variables, nothing will change. Hence the solution w0� b0� �0 minimizes (7.35), for
C � 1, subject to (7.41). To recover the constraint (7.34), we rescale to the set of
variables w�

� w
�� b� � b
�� �� � �
�. This leaves us with the objective function
(7.35), up to a constant scaling factor �2, using C � 1
�.

For further details on the connection between 	-SVMs and C-SVMs, see [122, 38].
A complete account has been given by Chang and Lin [98], who show that for a
given problem and kernel, there is an interval [	min� 	max] of admissible values
for 	 , with 0 � 	min � 	max � 1. The boundaries of the interval are computed
by considering ∑i �i as returned by the C-SVM in the limits C�� and C� 0,
respectively.
It has been noted that 	-SVMs have an interesting interpretation in terms of

reduced convex hulls [122, 38] (cf. (7.21)). If a problem is non-separable, the convex
hulls will no longer be disjoint. Therefore, it no longermakes sense to search for the
shortest line connecting them, and the approach of (7.22) will fail. In this situation,
it seems natural to reduce the convex hulls in size, by limiting the size of the
coefficients ci in (7.21) to some value 	 
 (0� 1). Intuitively, this amounts to limiting
the influence of individual points — note that in the original problem (7.22), two
single points can already determine the solution. It is possible to show that the 	-
SVM formulation solves the problem of finding the hyperplane orthogonal to the
closest line connecting the reduced convex hulls [122].
We now move on to another aspect of soft margin classification. When weRobustness and

Outliers introduced the slack variables, we did not attempt to justify the fact that in the
objective function, we used a penalizer ∑mi�1 �i. Why not use another penalizer,
such as ∑mi�1 �

p
i , for some p � 0 [111]? For instance, p � 0 would yield a penalizer
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that exactly counts the number of margin errors. Unfortunately, however, it is also a
penalizer that leads to a combinatorial optimization problem. Penalizers yielding
optimization problems that are particularly convenient, on the other hand, are
obtained for p � 1 and p � 2. By default, we use the former, as it possesses an
additional property which is statistically attractive. As the following proposition
shows, linearity of the target function in the slack variables �i leads to a certain
“outlier” resistance of the estimator. As above, we use the shorthand xi for Φ(xi).

Proposition 7.7 (Resistance of SV classification [481]) Suppose w can be expressed
in terms of the SVs which are not at bound,

w �
m

∑
i�1

�ixi (7.57)

with �i �� 0 only if �i 
 (0� 1
m) (where the �i are the coefficients of the dual solution).
Then local movements of any margin error xm parallel tow do not change the hyperplane.11

The proof can be found in Section A.2. For further results in support of the p � 1
case, see [527].
Note that the assumption (7.57) is not as restrictive as it may seem. Even though

the SV expansion of the solution,w� ∑mi�1 �i yixi, often contains many multipliers
�i which are at bound, it is nevertheless quite conceivable, especially when dis-
carding the requirement that the coefficients be bounded, that we can obtain an
expansion (7.57) in terms of a subset of the original vectors.
For instance, if we have a 2-D problem that we solve directly in input space, i.e.,

with k(x� x�) � �x� x��, then it suffices to have two linearly independent SVs which
are not at bound, in order to express w. This holds true regardless of whether or
not the two classes overlap, even if there are many SVs which are at the upper
bound. Further information on resistance and robustness of SVMs can be found in
Sections 3.4 and 9.3.
We have introduced SVs as those training examples xi for which �i � 0. In

some cases, it is useful to further distinguish different types of SVs. For reference
purposes, we give a list of different types of SVs (Table 7.2).
In Section 7.3, we used the KKT conditions to argue that in the hardmargin case,

the SVs lie exactly on the margin. Using an identical argument for the soft margin
case, we see that in this instance, in-bound SVs lie on the margin (Problem 7.9).
Note that in the hard margin case, where �max ��, every SV is an in-bound

SV. Note, moreover, that for kernels that produce full-rank Grammatrices, such as
the Gaussian (Theorem 2.18), in theory every SV is essential (provided there are
no duplicate patterns in the training set).12

11. Note that the perturbation of the point is carried out in feature space. What it precisely
corresponds to in input space therefore depends on the specific kernel chosen.
12. In practice, Gaussian Gram matrices usually have some eigenvalues that are close to 0.
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Table 7.2 Overview of different types of SVs. In each case, the condition on the Lagrange
multipliers �i (corresponding to an SV xi) is given. In the table, �max stands for the upper
bound in the optimization problem; for instance, �max � C

m in (7.38) and �max �
1
m in (7.50).

Type of SV Definition Properties
(standard) SV 0 � �i lies on or in margin
in-bound SV 0 � �i � �max lies on margin
bound SV �i � �max usually lies in margin

(“margin error”)
essential SV appears in all possible becomes margin error

expansions of solution when left out (Section 7.3)

7.6 Multi-Class Classification

So far, we have talked about binary classification, where the class labels can
only take two values: 
1. Many real-world problems, however, have more than
two classes — an example being the widely studied optical character recognition
(OCR) problem. We will now review some methods for dealing with this issue.

7.6.1 One Versus the Rest

To get M-class classifiers, it is common to construct a set of binary classifiers
f 1� � � � � f M, each trained to separate one class from the rest, and combine them
by doing the multi-class classification according to the maximal output before ap-
plying the sgn function; that is, by taking

argmax
j�1�����M

gj(x)� where gj(x) �
m

∑
i�1
yi�

j
i k(x� xi)� b

j (7.58)

(note that f j(x) � sgn (gj(x)), cf. (7.25)).
The values gj(x) can also be used for reject decisions. To see this, we considerReject Decisions

the difference between the two largest g j(x) as a measure of confidence in the
classification of x. If that measure falls short of a threshold 
, the classifier rejects
the pattern and does not assign it to a class (it might instead be passed on to
a human expert). This has the consequence that on the remaining patterns, a
lower error rate can be achieved. Some benchmark comparisons report a quantity
referred to as the punt error, which denotes the fraction of test patterns that must
be rejected in order to achieve a certain accuracy (say 1% error) on the remaining
test samples. To compute it, the value of 
 is adjusted on the test set [64].
The main shortcoming of (7.58), sometimes called the winner-takes-all approach,

is that it is somewhat heuristic. The binary classifiers used are obtained by training
on different binary classification problems, and thus it is unclear whether their


