
200 Pattern Recognition

and C� of both classes of training points,

C� :�

�
∑
yi��1

cixi

����� ∑yi��1 ci � 1� ci � 0
�
� (7.21)

It can be shown that the maximum margin hyperplane as described above is theConvex Hull
Separation one bisecting the shortest line orthogonally connecting C� and C� (Figure 7.5).

Formally, this can be seen by considering the optimization problem

minimize
c��m

�����∑yi�1 cixi � ∑
yi��1

cixi

�����
2

�

subject to ∑
yi�1

ci � 1� ∑
yi��1

ci � 1� ci � 0� (7.22)

and using the normal vectorw�∑yi�1 cixi�∑yi��1 cixi, scaled to satisfy the canon-
icality condition (Definition 7.1). The threshold b is explicitly adjusted such that the
hyperplane bisects the shortest connecting line (see also Problem 7.7).

7.4 Nonlinear Support Vector Classifiers

Thus far, we have shown why it is that a large margin hyperplane is good from a
statistical point of view, and we have demonstrated how to compute it. Although
these two points have worked out nicely, there is still a major drawback to the
approach: Everything that we have done so far is linear in the data. To allow
for much more general decision surfaces, we now use kernels to nonlinearly
transform the input data x1� � � � � xm � � into a high-dimensional feature space,
using a map Φ : xi �� xi; we then do a linear separation there.
To justify this procedure, Cover’s Theorem [113] is sometimes alluded to. This

theorem characterizes the number of possible linear separations of m points in
general position in an N-dimensional space. If m � N� 1, then all 2m separations
are possible — the VC dimension of the function class is n� 1 (Section 5.5.6). If
m � N � 1, then Cover’s Theorem states that the number of linear separationsCover’s Theorem
equals

2
N

∑
i�0

�
m� 1

i

�
� (7.23)

The more we increase N, the more terms there are in the sum, and thus the larger
is the resulting number. This theorem formalizes the intuition that the number of
separations increases with the dimensionality. It requires, however, that the points
are in general position — therefore, it does not strictly make a statement about
the separability of a given dataset in a given feature space. E.g., the feature map
might be such that all points lie on a rather restrictive lower-dimensionalmanifold,
which could prevent us from finding points in general position.
There is another way to intuitively understand why the kernel mapping in-

7.4 Nonlinear Support Vector Classifiers 201

R3

✕

❍

❍

✕

✕

✕

R2

✕

✕

✕

✕

❍

❍

R2

✕

✕

✕

✕

❍

❍

Φ

Φ:R2 R3

x1 x2

w1
w2 w3

f (x)

input space

feature space2 x1x2 x1
2 x2

2

f (x)=sgn (w1x1+w2x2+w3 2 x1x2+b)2 2

Figure 7.6 By map-
ping the input data
(top left) nonlin-
early (via Φ) into a
higher-dimensional
feature space �

(here: � � �
3), and

constructing a sep-
arating hyperplane
there (bottom left), an
SVM (top right) corre-
sponds to a nonlinear
decision surface in
input space (here:
�
2 , bottom right). We
use x1� x2 to denote
the entries of the
input vectors, and
w1�w2�w3 to denote
the entries of the
hyperplane normal
vector in�.

creases the chances of a separation, in terms of concepts of statistical learning
theory. Using a kernel typically amounts to using a larger function class, thus in-
creasing the capacity of the learning machine, and rendering problems separable
that are not linearly separable to start with.
On the practical level, the modification necessary to perform the algorithm“Kernelizing” the

Optimal Margin
Hyperplane

in a high-dimensional feature space are minor. In the above sections, we made
no assumptions on the dimensionality of �, the space in which we assumed
our patterns belong. We only required � to be equipped with a dot product.
The patterns xi that we talked about previously thus need not coincide with
the input patterns. They can equally well be the results of mapping the original
input patterns xi into a high-dimensional feature space. Consequently, we take
the stance that wherever we wrote x, we actually meant Φ(x). Maximizing the
target function (7.17), and evaluating the decision function (7.20), then requires
the computation of dot products �Φ(x)�Φ(xi)� in a high-dimensional space. These
expensive calculations are reduced significantly by using a positive definite kernel
k (see Chapter 2), such thatKernel Trick

�Φ(x)�Φ(xi)� � k(x� xi)� (7.24)

leading to decision functions of the form (cf. (7.20))

f (x)� sgn

�
m

∑
i�1
yi�ik(x� xi)� b

�
� (7.25)

202 Pattern Recognition

Σ f(x)= sgn (+ b)

input vector x

classification

comparison: e.g.k k k k

support vectors
 x 1

... x 4

weightsλ1 λ2 λ3 λ4

k(x,x i)=exp(−||x−x i||
2 / c)

k(x,x i)=tanh(κ(x.x i)+θ)

k(x,x i)=(x.x i)
d

f(x)= sgn (Σ λi k(x,x i) + b)
i

Figure 7.7 Architecture of SVMs. The kernel function k is chosen a priori; it determines the
type of classifier (for instance, polynomial classifier, radial basis function classifier, or neural
network). All other parameters (number of hidden units, weights, threshold b) are found
during training, by solving a quadratic programming problem. The first layer weights xi
are a subset of the training set (the Support Vectors); the second layer weights �i � yi�i are
computed from the Lagrange multipliers (cf. (7.25)).

At this point, a small aside regarding terminology is in order. As explained in
Chapter 2, the input domain � need not be a vector space. Therefore, the Support
Vectors in (7.25) (i.e., those xi with �i � 0) are not necessarily vectors. One could
choose to be on the safe side, and only refer to the corresponding Φ(xi) as SVs.
Common usage employs the term in a somewhat loose sense for both, however.
Consequently, everything that has been said about the linear case also applies

to nonlinear cases, obtained using a suitable kernel k, instead of the Euclidean dot
product (Figure 7.6). By using some of the kernel functions described in Chapter 2,
the SV algorithm can construct a variety of learning machines (Figure 7.7), some
of which coincide with classical architectures: polynomial classifiers of degree d,Kernels

k(x� xi) � �x� xi�
d � (7.26)

radial basis function classifierswith Gaussian kernel of width c � 0,

k(x� xi) � exp
�
�	x� xi	2�c

�
� (7.27)

and neural networks (e.g., [49, 235]) with tanh activation function,

k(x� xi) � tanh(� �x� xi��Θ)� (7.28)

The parameters � � 0 and Θ � � are the gain and horizontal shift. As we shall
see later, the tanh kernel can lead to very good results. Nevertheless, we should
mention at this point that from a mathematical point of view, it has certain short-

7.4 Nonlinear Support Vector Classifiers 203

comings, cf. the discussion following (2.69).
To find the decision function (7.25), we solve the following problem (cf. (7.17)):Quadratic

Program
maximize

�

W(�) �
m

∑
i�1

�i �
1
2

m

∑
i� j�1

�i� j yiy jk(xi� xj)� (7.29)

subject to the constraints (7.18) and (7.19).
If k is positive definite, Qij :� (yiyjk(xi� xj))i j is a positive definite matrix (Prob-

lem 7.6), which provides us with a convex problem that can be solved efficiently
(cf. Chapter 6). To see this, note that (cf. Proposition 2.16)

m

∑
i� j�1

�i� jyi y jk(xi� xj) �

	
m

∑
i�1

�i yiΦ(xi)�
m

∑
j�1

� j y jΦ(xj)

� 0� (7.30)

for all � � �
m .

As described in Chapter 2, we can actually use a larger class of kernels without
destroying the convexity of the quadratic program. This is due to the fact that
the constraint (7.19) excludes certain parts of the space of multipliers �i. As a
result, we only need the kernel to be positive definite on the remaining points.
This is precisely guaranteed if we require k to be conditionally positive definite
(see Definition 2.21). In this case, we have ��Q� � 0 for all coefficient vectors �
satisfying (7.19).
To compute the threshold b, we take into account that due to the KKT conditionsThreshold

(7.16), � j � 0 implies (using (7.24))
m

∑
i�1
yi�ik(xj� xi)� b � yj� (7.31)

Thus, the threshold can for instance be obtained by averaging

b � yj �
m

∑
i�1
yi�ik(xj� xi)� (7.32)

over all points with � j � 0; in other words, all SVs. Alternatively, one can compute
b from the value of the corresponding double dual variable; see Section 10.3 for
details. Sometimes it is also useful not to use the “optimal” b, but to change it in
order to adjust the number of false positives and false negatives.
Figure 1.7 shows how a simple binary toy problem is solved, using a Support

Vector Machine with a radial basis function kernel (7.27). Note that the SVs are the
patterns closest to the decision boundary — not only in the feature space, where
by construction, the SVs are the patterns closest to the separating hyperplane, but
also in the input space depicted in the figure. This feature differentiates SVMs
from other types of classifiers. Figure 7.8 shows both the SVs and the centers ex-
tracted by k-means, which are the expansion patterns that a classical RBF network
approach would employ.
In a study comparing the two approaches on the USPS problem of handwrittenComparison to

RBF Network character recognition, a SVM with a Gaussian kernel outperformed the classical
RBF network using Gaussian kernels [482]. A hybrid approach, where the SVM

204 Pattern Recognition

✕

✕

✕

✕

✕

Figure 7.8 RBF centers automat-
ically computed by the Support
Vector algorithm (indicated by ex-
tra circles), using a Gaussian ker-
nel. The number of SV centers ac-
cidentally coincides with the num-
ber of identifiable clusters (indi-
cated by crosses found by k-means
clustering, with k � 2 and k� 3 for
balls and circles, respectively), but
the naive correspondence between
clusters and centers is lost; indeed,
3 of the SV centers are circles, and
only 2 of them are balls. Note that
the SV centers are chosen with re-
spect to the classification task to be
solved (from [482]).

algorithm was used to identify the centers (or hidden units) for the RBF network
(that is, as a replacement for k-means), exhibited a performance which was in
between the previous two. The study concluded that the SVM algorithm yielded
two advantages. First, it better identified good expansion patterns, and second, its
large margin regularizer led to second-layer weights that generalized better. We
should add, however, that using clever engineering, the classical RBF algorithm
can be improved to achieve a performance close to the one of SVMs [427].

7.5 Soft Margin Hyperplanes

So far, we have not said much about when the above will actually work. In
practice, a separating hyperplane need not exist; and even if it does, it is not
always the best solution to the classification problem. After all, an individual
outlier in a data set, for instance a pattern which is mislabelled, can crucially affect
the hyperplane. We would rather have an algorithm which can tolerate a certain
fraction of outliers.
A natural idea might be to ask for the algorithm to return the hyperplane

that leads to the minimal number of training errors. Unfortunately, it turns out
that this is a combinatorial problem. Worse still, the problem is even hard to
approximate: Ben-David and Simon [34] have recently shown that it is NP-hard to
find a hyperplane whose training error is worse by some constant factor than the
optimal one. Interestingly, they also show that this can be alleviated by taking
into account the concept of the margin. By disregarding points that are within
some fixed positive margin of the hyperplane, then the problem has polynomial
complexity.
Cortes and Vapnik [111] chose a different approach for the SVM, following [40].

