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should be constructed such that they maximize the margin, and at the same time
separate the training data with as few exceptions as possible. Sections 7.3 and 7.5
respectively will deal with these two issues.

7.3 Optimal Margin Hyperplanes

Let us now derive the optimization problem to be solved for computing the opti-
mal hyperplane. Suppose we are given a set of examples (x1� y1)� � � � � (xm� ym)� xi �
�� yi � ��1�. Here and below, the index i runs over 1� � � � �m by default. We assume
that there is at least one negative and one positive yi. We want to find a decision
function fw�b(x) � sgn

�
�w� x�� b

�
satisfying

fw�b(xi) � yi� (7.8)

If such a function exists (the non-separable case will be dealt with later), canoni-
cality (7.2) implies

yi
�
�xi�w�� b

�
� 1� (7.9)

As an aside, note that out of the two canonical forms of the same hyperplane, (w� b)
and (�w��b), only one will satisfy equations (7.8) and (7.11). The existence of class
labels thus allows to distinguish two orientations of a hyperplane.
Following the previous section, a separating hyperplane which generalizes well

can thus be constructed by solving the following problem:

minimize
w���b��

� (w) �
1
2
	w	2� (7.10)

subject to yi
�
�xi�w�� b

�
� 1 for all i � 1� � � � �m� (7.11)

This is called the primal optimization problem.
Problems like this one are the subject of optimization theory. For details on how

to solve them, see Chapter 6; for a short intuitive explanation, cf. the remarks
following (1.26) in the introductory chapter. We will now derive the so-called dual
problem, which can be shown to have the same solutions as (7.10). In the present
case, it will turn out that it is more convenient to deal with the dual. To derive it,
we introduce the Lagrangian,Lagrangian

L(w� b��) �
1
2
	w	2 �

m

∑
i�1

�i
�
yi(�xi�w�� b)� 1

�
� (7.12)

with Lagrange multipliers �i � 0. Recall that as in Chapter 1, we use bold face
Greek variables to refer to the corresponding vectors of variables, for instance,
� � (�1� � � � � �m).
The Lagrangian L must be maximized with respect to �i, and minimized with

respect to w and b (see Theorem 6.26). Consequently, at this saddle point, the
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derivatives of L with respect to the primal variables must vanish,

�

�b
L(w� b��) � 0�

�

�w
L(w� b��) � 0� (7.13)

which leads to
m

∑
i�1

�i yi � 0� (7.14)

and

w �
m

∑
i�1

�i yixi� (7.15)

The solution vector thus has an expansion in terms of training examples. Note
that although the solution w is unique (due to the strict convexity of (7.10), and
the convexity of (7.11)), the coefficients �i need not be.
According to the KKT theorem (Chapter 6), only the Lagrange multipliers �i

that are non-zero at the saddle point, correspond to constraints (7.11) which are
precisely met. Formally, for all i � 1� � � � �m, we have

�i[yi(�xi�w�� b)� 1] � 0� (7.16)

The patterns xi for which �i � 0 are called Support Vectors. This terminology isSupport Vectors
related to corresponding terms in the theory of convex sets, relevant to convex
optimization (e.g., [334, 45]).3 According to (7.16), they lie exactly on the margin.4

All remaining examples in the training set are irrelevant: Their constraints (7.11)
are satisfied automatically, and they do not appear in the expansion (7.15), since
their multipliers satisfy �i � 0.5

This leads directly to an upper bound on the generalization ability of optimal
margin hyperplanes. To this end, we consider the so-called leave-one-out method
(for further details, see Section 12.2) to estimate the expected test error [335, 559].
This procedure is based on the idea that if we leave out one of the training

3. Given any boundary point of a convex set, there always exists a hyperplane separating
the point from the interior of the set. This is called a supporting hyperplane.
SVs lie on the boundary of the convex hulls of the two classes, thus they possess support-

ing hyperplanes. The SV optimal hyperplane is the hyperplane which lies in the middle of
the two parallel supporting hyperplanes (of the two classes) with maximum distance.
Conversely, from the optimal hyperplane, we can obtain supporting hyperplanes for all

SVs of both classes, by shifting it by 1��w� in both directions.
4. Note that this implies the solution (w� b), where b is computed using yi(�w�xi�� b)� 1 for
SVs, is in canonical formwith respect to the training data. (This makes use of the reasonable
assumption that the training set contains both positive and negative examples.)
5. In a statistical mechanics framework, Anlauf and Biehl [12] have put forward a similar
argument for the optimal stability perceptron, also computed using constrained optimization.
There is a large body of work in the physics community on optimal margin classification.
Some further references of interest are [310, 191, 192, 394, 449, 141]; other early works
include [313].
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examples, and train on the remaining ones, then the probability of error on the left
out example gives us a fair indication of the true test error. Of course, doing this for
a single training example leads to an error of either zero or one, so it does not yet
give an estimate of the test error. The leave-one-out method repeats this procedure
for each individual training example in turn, and averages the resulting errors.
Let us return to the present case. If we leave out a pattern xi� , and construct

the solution from the remaining patterns, the following outcomes are possible (cf.
(7.11)):

1. yi�
�
�xi� �w�� b

�
� 1. In this case, the pattern is classified correctly and does not

lie on the margin. These are patterns that would not have become SVs anyway.

2. yi�
�
�xi� �w�� b

�
� 1. In other words, xi� exactly meets the constraint (7.11). In

this case, the solution w does not change, even though the coefficients �i would
change: Namely, if xi� might have become a Support Vector (i.e., �i� � 0) had
it been kept in the training set. In that case, the fact that the solution is the
same, no matter whether xi� is in the training set or not, means that xi� can be
written as ∑SVs �i yixi with, �i � 0. Note that condition 2 is not equivalent to saying
that xi� may be written as some linear combination of the remaining Support
Vectors: Since the sign of the coefficients in the linear combination is determined
by the class of the respective pattern, not any linear combination will do. Strictly
speaking, xi� must lie in the cone spanned by the yixi, where the xi are all Support
Vectors.6 For more detail, see [565] and Section 12.2.

3. 0 � yi�
�
�xi� �w�� b

�
� 1. In this case, xi� lies within the margin, but still on the

correct side of the decision boundary. Thus, the solution looks different from the
one obtained with xi� in the training set (in that case, xi� would satisfy (7.11) after
training); classification is nevertheless correct.

4. yi�
�
�xi� �w�� b

�
� 0. This means that xi� is classified incorrectly.

Note that cases 3 and 4 necessarily correspond to examples which would have
become SVs if kept in the training set; case 2 potentially includes such situations.
Only case 4, however, leads to an error in the leave-one-out procedure. Conse-
quently, we have the following result on the generalization error of optimal mar-
gin classifiers [570]:7

Proposition 7.4 The expectation of the number of Support Vectors obtained during train-Leave-One-Out
Bound ing on a training set of size m, divided by m, is an upper bound on the expected proba-

bility of test error of the SVM trained on training sets of size m� 1.8

6. Possible non-uniqueness of the solution’s expansion in terms of SVs is related to zero
Eigenvalues of (yiyjk(xi� xj))i j, cf. Proposition 2.16. Note, however, the above caveat on the
distinction between linear combinations, and linear combinations with coefficients of fixed
sign.
7. It also holds for the generalized versions of optimal margin classifiers described in the
following sections.
8. Note that the leave-one-out procedure performed with m training examples thus yields
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Figure 7.5 The optimal hyperplane
(Figure 7.2) is the one bisecting the
shortest connection between the con-
vex hulls of the two classes.

A sharper bound can be formulated by making a further distinction in case 2,
between SVs that must occur in the solution, and those that can be expressed in
terms of the other SVs (see [570, 565, 268, 549] and Section 12.2).
We now return to the optimization problem to be solved. Substituting the con-

ditions for the extremum, (7.14) and (7.15), into the Lagrangian (7.12), we arrive at
the dual form of the optimization problem:Quadratic

Program of
Optimal Margin
Classifier

maximize
���m

W(�) �
m

∑
i�1

�i �
1
2

m

∑
i� j�1

�i� j yiy j
�
xi� x j

�
� (7.17)

subject to �i � 0� i � 1� � � � �m� (7.18)

and
m

∑
i�1

�i yi � 0� (7.19)

On substitution of the expansion (7.15) into the decision function (7.3), we obtain
an expression which can be evaluated in terms of dot products, taken between the
pattern to be classified and the Support Vectors,

f (x) � sgn

�
m

∑
i�1

�i yi �x� xi�� b

�
� (7.20)

To conclude this section, we note that there is an alternative way to derive the
dual optimization problem [38]. To describe it, we first form the convex hulls C�

a bound valid for training sets of size m � 1. This difference, however, does not usually
mislead us too much. In statistical terms, the leave-one-out error is called almost unbiased.
Note, moreover, that the statement talks about the expected probability of test error — there
are thus two sources of randomness. One is the expectation over different training sets of
sizem� 1, the other is the probability of test error when one of the SVMs is faced with a test
example drawn from the underlying distribution generating the data. For a generalization,
see Theorem 12.9.
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and C� of both classes of training points,

C� :�

�
∑
yi��1

cixi

����� ∑yi��1 ci � 1� ci � 0
	
� (7.21)

It can be shown that the maximum margin hyperplane as described above is theConvex Hull
Separation one bisecting the shortest line orthogonally connecting C� and C� (Figure 7.5).

Formally, this can be seen by considering the optimization problem

minimize
c��m






∑yi�1 cixi � ∑
yi��1

cixi







2

�

subject to ∑
yi�1

ci � 1� ∑
yi��1

ci � 1� ci � 0� (7.22)

and using the normal vectorw�∑yi�1 cixi�∑yi��1 cixi, scaled to satisfy the canon-
icality condition (Definition 7.1). The threshold b is explicitly adjusted such that the
hyperplane bisects the shortest connecting line (see also Problem 7.7).

7.4 Nonlinear Support Vector Classifiers

Thus far, we have shown why it is that a large margin hyperplane is good from a
statistical point of view, and we have demonstrated how to compute it. Although
these two points have worked out nicely, there is still a major drawback to the
approach: Everything that we have done so far is linear in the data. To allow
for much more general decision surfaces, we now use kernels to nonlinearly
transform the input data x1� � � � � xm � � into a high-dimensional feature space,
using a map Φ : xi 
� xi; we then do a linear separation there.
To justify this procedure, Cover’s Theorem [113] is sometimes alluded to. This

theorem characterizes the number of possible linear separations of m points in
general position in an N-dimensional space. If m � N� 1, then all 2m separations
are possible — the VC dimension of the function class is n� 1 (Section 5.5.6). If
m � N � 1, then Cover’s Theorem states that the number of linear separationsCover’s Theorem
equals

2
N

∑
i�0

�
m� 1

i

�
� (7.23)

The more we increase N, the more terms there are in the sum, and thus the larger
is the resulting number. This theorem formalizes the intuition that the number of
separations increases with the dimensionality. It requires, however, that the points
are in general position — therefore, it does not strictly make a statement about
the separability of a given dataset in a given feature space. E.g., the feature map
might be such that all points lie on a rather restrictive lower-dimensionalmanifold,
which could prevent us from finding points in general position.
There is another way to intuitively understand why the kernel mapping in-


