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7.2 The Role of the Margin

Geometrical
Margin

Margin of
Canonical
Hyperplanes

Insensitivity to
Pattern Noise

The margin plays a crucial role in the design of SV learning algorithms. Let us start
by formally defining it.

Definition 7.2 (Geometrical Margin) For a hyperplane {x € H|(w,x) +b = 0}, we
call

P (X, ) = y((w, x) +b) /|| w] (7.4)

the geometrical margin of the point (x, y) € H x {%1}. The minimum value
Pawyp) = min Pow,p)(Xi, Vi) (7.5)

shall be called the geometrical margin of (x1, y1), . . . , (Xu, Ym). If the latter is omitted, it
is understood that the training set is meant.

Occasionally, we will omit the qualification geometrical, and simply refer to the
margin.

For a point (x, y) which is correctly classified, the margin is simply the distance
from x to the hyperplane. To see this, note first that the margin is zero on the
hyperplane. Second, in the definition, we effectively consider a hyperplane

(W, ) == (w/[wll, b/ [wl]), 76)

which has a unit length weight vector, and then compute the quantity y((Ww, x) + b).
The term (W, x), however, simply computes the length of the projection of x onto
the direction orthogonal to the hyperplane, which, after adding the offset b, equals
the distance to it. The multiplication by y ensures that the margin is positive
whenever a point is correctly classified. For misclassified points, we thus get a
margin which equals the negative distance to the hyperplane. Finally, note that
for canonical hyperplanes, the margin is 1/||w|| (Figure 7.2). The definition of
the canonical hyperplane thus ensures that the length of w now corresponds to
a meaningful geometrical quantity.

It turns out that the margin of a separating hyperplane, and thus the length of
the weight vector w, plays a fundamental role in support vector type algorithms.
Loosely speaking, if we manage to separate the training data with a large margin,
then we have reason to believe that we will do well on the test set. Not surprisingly,
there exist a number of explanations for this intuition, ranging from the simple to
the rather technical. We will now briefly sketch some of them.

The simplest possible justification for large margins is as follows. Since the
training and test data are assumed to have been generated by the same underlying
dependence, it seems reasonable to assume that most of the test patterns will lie
close (in ) to at least one of the training patterns. For the sake of simplicity, let us
consider the case where all test points are generated by adding bounded pattern
noise (sometimes called input noise) to the training patterns. More precisely, given
a training point (x, y), we will generate test points of the form (x + Ax, y), where
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Figure 7.3 Two-dimensional toy ex-
ample of a classification problem: Sep-
arate ‘0o’ from ‘+" using a hyperplane.
Suppose that we add bounded noise to
each pattern. If the optimal margin hy-
perplane has margin p, and the noise
is bounded by r < p, then the hyper-
plane will correctly separate even the
noisy patterns. Conversely, if we ran the
perceptron algorithm (which finds some
separating hyperplane, but not neces-
sarily the optimal one) on the noisy
data, then we would recover the opti-
mal hyperplane in the limit r — p.

Ax € H is bounded in norm by some r > 0. Clearly, if we manage to separate the
training set with a margin p > r, we will correctly classify all test points: Since all
training points have a distance of at least p to the hyperplane, the test patterns will
still be on the correct side (Figure 7.3, cf. also [152]).

If we knew p beforehand, then this could actually be turned into an optimal
margin classifier training algorithm, as follows. If we use an r which is slightly
smaller than p, then even the patterns with added noise will be separable with a
nonzero margin. In this case, the standard perceptron algorithm can be shown to
converge.!

Therefore, we can run the perceptron algorithm on the noisy patterns. If the al-
gorithm finds a sufficient number of noisy versions of each pattern, with different
perturbations Ax, then the resulting hyperplane will not intersect any of the balls
depicted in Figure 7.3. As r approaches p, the resulting hyperplane should bet-
ter approximate the maximum margin solution (the figure depicts the limit r = p).
This constitutes a connection between training with pattern noise and maximizing
the margin. The latter, in turn, can be thought of as a regularizer, comparable to
those discussed earlier (see Chapter 4 and (2.49)). Similar connections to training
with noise, for other types of regularizers, have been pointed out before for neural
networks [50].

1. Rosenblatt’s perceptron algorithm [439] is one of the simplest conceivable iterative pro-
cedures for computing a separating hyperplane. In its simplest form, it proceeds as fol-
lows. We start with an arbitrary weight vector wy. At step n € N, we consider the train-
ing example (x,,y,). If it is classified correctly using the current weight vector (i.e., if
sgn (X, Wy_1) = ), we set w,, := w,_y; otherwise, we set w,, := w,_1 + ny;x; (here, n > 0
is a learning rate). We thus loop over all patterns repeatedly, until we can complete one full
pass through the training set without a single error. The resulting weight vector will thus
classify all points correctly. Novikoff [386] proved that this procedure terminates, provided
that the training set is separable with a nonzero margin.
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Figure 7.4 Two-dimensional toy exam-
, , ’ ple of a classification problem: Separate
/0 0 v ‘0" from ‘+" using a hyperplane passing
: \ through the origin. Suppose the patterns
Yoy are bounded in length (distance to the ori-
; > gin) by R, and the classes are separated by
o N : an optimal hyperplane (parametrized by
- ’ + n the angle ) with margin p. In this case,
P N /7' we can perturb the parameter by some
a ’ A~y with |Ay| < arcsin £, and still correctly
separate the data.

A similar robustness argument can be made for the dependence of the hyper-
plane on the parameters (w,b) (cf. [504]). If all points lie at a distance of at least
p from the hyperplane, and the patterns are bounded in length, then small per-
turbations to the hyperplane parameters will not change the classification of the
training data (see Figure 7.4).2 Being able to perturb the parameters of the hyper-
plane amounts to saying that to store the hyperplane, we need fewer bits than
we would for a hyperplane whose exact parameter settings are crucial. Interest-
ingly, this is related to what is called the Minimum Description Length principle
([583, 433, 485], cf. also [522, 305, 94]): The best description of the data, in terms of
generalization error, should be the one that requires the fewest bits to store.

We now move on to a more technical justification of large margin algorithms.
For simplicity, we only deal with hyperplanes that have offset b = 0, leaving
f(x) = sgn (w,x). The theorem below follows from a result in [24].

Theorem 7.3 (Margin Error Bound) Consider the set of decision functions f(x) =
sgn (w,x) with |w|| < A and ||x|| < R, for some R,A > 0. Moreover, let p > 0, and
v denote the fraction of training examples with margin smaller than p/||w||, referred to as
the margin error.

For all distributions P generating the data, with probability at least 1 — § over the
drawing of the m training patterns, and for any p > 0 and § € (0,1), the probability
that a test pattern drawn from P will be misclassified is bounded from above, by

v+ \/ < (R:Az In? 1 + In(1 /5)) . 7.7)
m\ p

Here, ¢ is a universal constant.

2. Note that this would not hold true if we allowed patterns of arbitrary length — this type
of restriction of the pattern lengths pops up in various places, such as Novikoff’s theorem
[386], Vapnik’s VC dimension bound for margin classifiers (Theorem 5.5), and Theorem 7.3.
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Let us try to understand this theorem. It makes a probabilistic statement about a
probability, by giving an upper bound on the probability of test error, which itself
only holds true with a certain probability, 1 — §. Where do these two probabilities
come from? The first is due to the fact that the fest examples are randomly drawn
from P; the second is due to the training examples being drawn from P. Strictly
speaking, the bound does not refer to a single classifier that has been trained on
some fixed data set at hand, but to an ensemble of classifiers, trained on various
instantiations of training sets generated by the same underlying regularity P.

It is beyond the scope of the present chapter to prove this result. The basic ingre-
dients of bounds of this type, commonly referred to as VC bounds, are described
in Chapter 5; for further details, see Chapter 12, and [562, 491, 504, 125]. Several
aspects of the bound are noteworthy. The test error is bounded by a sum of the
margin error v, and a capacity term (the /- term in (7.7)), with the latter tend-
ing to zero as the number of examples, m, tends to infinity. The capacity term can
be kept small by keeping R and A small, and making p large. If we assume that
R and A are fixed a priori, the main influence is p. As can be seen from (7.7), a
large p leads to a small capacity term, but the margin error v gets larger. A small
p, on the other hand, will usually cause fewer points to have margins smaller than
p/|lwl|, leading to a smaller margin error; but the capacity penalty will increase
correspondingly. The overall message: Try to find a hyperplane which is aligned
such that even for a large p, there are few margin errors.

Maximizing p, however, is the same as minimizing the length of w. Hence we
might just as well keep p fixed, say, equal to 1 (which is the case for canonical
hyperplanes), and search for a hyperplane which has a small |w|| and few points
with a margin smaller than 1/||w||; in other words (Definition 7.2), few points such
that y (w,x) < 1.

It should be emphasized that dropping the condition ||w| < A would prevent
us from stating a bound of the kind shown above. We could give an alternative
bound, where the capacity depends on the dimensionality of the space H. The
crucial advantage of the bound given above is that it is independent of that
dimensionality, enabling us to work in very high dimensional spaces. This will
become important when we make use of the kernel trick.

It has recently been pointed out that the margin also plays a crucial role in im-
proving asymptotic rates in nonparametric estimation [551]. This topic, however,
is beyond the scope of the present book.

To conclude this section, we note that large margin classifiers also have advan-
tages of a practical nature: An algorithm that can separate a dataset with a certain
margin will behave in a benign way when implemented in hardware. Real-world
systems typically work only within certain accuracy bounds, and if the classifier
is insensitive to small changes in the inputs, it will usually tolerate those inaccura-
cies.

We have thus accumulated a fair amount of evidence in favor of the following
approach: Keep the margin training error small, and the margin large, in order to
achieve high generalization ability. In other words, hyperplane decision functions
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should be constructed such that they maximize the margin, and at the same time
separate the training data with as few exceptions as possible. Sections 7.3 and 7.5
respectively will deal with these two issues.

7.3 Optimal Margin Hyperplanes

Lagrangian

Let us now derive the optimization problem to be solved for computing the opti-
mal hyperplane. Suppose we are given a set of examples (x1, y1), - . ., Xy, Ym), X; €
H,y; € {£1}. Here and below, the index i runs over 1, . . ., m by default. We assume
that there is at least one negative and one positive y;. We want to find a decision
function fy ;(x) = sgn ((w,x) + b) satisfying

fwp (X)) =y (7.8)

If such a function exists (the non-separable case will be dealt with later), canoni-
cality (7.2) implies

yi ((xi,w) +b) > 1. (7.9)

As an aside, note that out of the two canonical forms of the same hyperplane, (w, b)
and (—w, —b), only one will satisfy equations (7.8) and (7.11). The existence of class
labels thus allows to distinguish two orientations of a hyperplane.

Following the previous section, a separating hyperplane which generalizes well
can thus be constructed by solving the following problem:

minimize 7(w) = 1||WH2, (7.10)
weH ,bER 2
subject to y; ({(x;,w)+b) >1foralli=1,...,m. (7.11)

This is called the primal optimization problem.

Problems like this one are the subject of optimization theory. For details on how
to solve them, see Chapter 6; for a short intuitive explanation, cf. the remarks
following (1.26) in the introductory chapter. We will now derive the so-called dual
problem, which can be shown to have the same solutions as (7.10). In the present
case, it will turn out that it is more convenient to deal with the dual. To derive it,
we introduce the Lagrangian,

m

Liw, b, a) — %Hw”z = e (il W) + ) — 1), (7.12)
=1
with Lagrange multipliers a; > 0. Recall that as in Chapter 1, we use bold face
Greek variables to refer to the corresponding vectors of variables, for instance,
a=(ag,...,on).
The Lagrangian L must be maximized with respect to ;, and minimized with
respect to w and b (see Theorem 6.26). Consequently, at this saddle point, the



