
7 Pattern Recognition

This chapter is devoted to a detailed description of SV classification (SVC) meth-
ods. We have already briefly visited the SVC algorithm in Chapter 1. There will be
some overlap with that chapter, but here we give a more thorough treatment.
We start by describing the classifier that forms the basis for SVC, the separatingOverview

hyperplane (Section 7.1). Separating hyperplanes can differ in how large a margin
of separation they induce between the classes, with corresponding consequences
on the generalization error, as discussed in Section 7.2. The “optimal” margin hy-
perplane is defined in Section 7.3, along with a description of how to compute it.
Using the kernel trick of Chapter 2, we generalize to the case where the optimal
margin hyperplane is not computed in input space, but in a feature space nonlin-
early related to the latter (Section 7.4). This dramatically increases the applicability
of the approach, as does the introduction of slack variables to deal with outliers
and noise in the data (Section 7.5). Many practical problems require us to classify
the data into more than just two classes. Section 7.6 describes how multi-class SV
classification systems can be built. Following this, Section 7.7 describes some vari-
ations on standard SV classification algorithms, differing in the regularizers and
constraints that are used. We conclude with a fairly detailed section on experi-
ments and applications (Section 7.8).
This chapter requires basic knowledge of kernels, as conveyed in the first halfPrerequisites

of Chapter 2. To understand details of the optimization problems, it is helpful (but
not indispensable) to get some background from Chapter 6. To understand the
connections to learning theory, in particular regarding the statistical basis of the
regularizer used in SV classification, it would be useful to have read Chapter 5.

7.1 Separating Hyperplanes

Suppose we are given a dot product space �, and a set of pattern vectors
x1� � � � � xm ��. Any hyperplane in� can be written asHyperplane

�x ��� �w� x�� b � 0�� w ��� b � � � (7.1)

In this formulation, w is a vector orthogonal to the hyperplane: If w has unit
length, then �w� x� is the length of x along the direction of w (Figure 7.1). For
general w, this number will be scaled by �w�. In any case, the set (7.1) consists
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of vectors that all have the same length along w. In other words, these are vectors
that project onto the same point on the line spanned by w.
In this formulation, we still have the freedom to multiply w and b by the same

non-zero constant. This superfluous freedom— physicists would call it a “gauge”
freedom— can be abolished as follows.

Definition 7.1 (Canonical Hyperplane) The pair (w� b)���� is called a canonical
form of the hyperplane (7.1) with respect to x1� � � � � xm ��, if it is scaled such that

min
i�1�����m

� �w� xi�� b� � 1� (7.2)

which amounts to saying that the point closest to the hyperplane has a distance of 1��w�
(Figure 7.2).

Note that the condition (7.2) still allows two such pairs: given a canonical hyper-
plane (w� b), another one satisfying (7.2) is given by (	w�	b). For the purpose of
pattern recognition, these two hyperplanes turn out to be different, as they are
oriented differently; they correspond to two decision functions,Decision

Function
fw�b :�
 ��1�

x �
 fw�b(x) � sgn
�
�w� x�� b

�
� (7.3)

which are the inverse of each other.
In the absence of class labels yi � ��1� associated with the xi, there is no way

of distinguishing the two hyperplanes. For a labelled dataset, a distinction exists:
The two hyperplanes make opposite class assignments. In pattern recognition,
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Figure 7.1 A separable classification problem, alongwith a separating hyperplane, written
in terms of an orthogonal weight vectorw and a threshold b. Note that by multiplying both
w and b by the same non-zero constant, we obtain the same hyperplane, represented in
terms of different parameters. Figure 7.2 shows how to eliminate this scaling freedom.
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Figure 7.2 By requiring the scaling of w and b to be such that the point(s) closest to the
hyperplane satisfy � �w�xi�� b� � 1, we obtain a canonical form (w� b) of a hyperplane. Note
that in this case, the margin, measured perpendicularly to the hyperplane, equals 1��w�.
This can be seen by considering two opposite points which precisely satisfy � �w�xi�� b�� 1
(cf. Problem 7.4).

we attempt to find a solution fw�b which correctly classifies the labelled examples
(xi� yi) � �� ��1�; in other words, which satisfies fw�b(xi) � yi for all i (in this
case, the training set is said to be separable), or at least for a large fraction thereof.
The next section will introduce the term margin, to denote the distance to a sep-

arating hyperplane from the point closest to it. It will be argued that to generalize
well, a large margin should be sought. In view of Figure 7.2, this can be achieved
by keeping �w� small. Readers who are content with this level of detail may skip
the next section and proceed directly to Section 7.3, where we describe how to
construct the hyperplane with the largest margin.
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7.2 The Role of the Margin

Themargin plays a crucial role in the design of SV learning algorithms. Let us start
by formally defining it.

Definition 7.2 (Geometrical Margin) For a hyperplane �x � �� �w� x�� b � 0�, we
call

�(w�b)(x� y) :� y(�w� x�� b)��w� (7.4)

the geometrical margin of the point (x� y) �����1�. The minimum valueGeometrical
Margin

�(w�b) :� min
i�1�����m

�(w�b)(xi� yi) (7.5)

shall be called the geometrical margin of (x1� y1)� � � � � (xm� ym). If the latter is omitted, it
is understood that the training set is meant.

Occasionally, we will omit the qualification geometrical, and simply refer to the
margin.
For a point (x� y) which is correctly classified, the margin is simply the distance

from x to the hyperplane. To see this, note first that the margin is zero on the
hyperplane. Second, in the definition, we effectively consider a hyperplane

(ŵ� b̂) :� (w��w�� b��w�)� (7.6)

which has a unit lengthweight vector, and then compute the quantity y(�ŵ� x�� b̂).
The term �ŵ� x�, however, simply computes the length of the projection of x onto
the direction orthogonal to the hyperplane, which, after adding the offset b̂, equals
the distance to it. The multiplication by y ensures that the margin is positive
whenever a point is correctly classified. For misclassified points, we thus get a
margin which equals the negative distance to the hyperplane. Finally, note that
for canonical hyperplanes, the margin is 1��w� (Figure 7.2). The definition ofMargin of

Canonical
Hyperplanes

the canonical hyperplane thus ensures that the length of w now corresponds to
a meaningful geometrical quantity.
It turns out that the margin of a separating hyperplane, and thus the length of

the weight vector w, plays a fundamental role in support vector type algorithms.
Loosely speaking, if we manage to separate the training data with a large margin,
thenwe have reason to believe that wewill dowell on the test set. Not surprisingly,
there exist a number of explanations for this intuition, ranging from the simple to
the rather technical. We will now briefly sketch some of them.
The simplest possible justification for large margins is as follows. Since theInsensitivity to

Pattern Noise training and test data are assumed to have been generated by the same underlying
dependence, it seems reasonable to assume that most of the test patterns will lie
close (in�) to at least one of the training patterns. For the sake of simplicity, let us
consider the case where all test points are generated by adding bounded pattern
noise (sometimes called input noise) to the training patterns. More precisely, given
a training point (x� y), we will generate test points of the form (x� ∆x� y), where


