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convex functions then followed immediately from the previous reasoning. The
main results are dualization, meaning the transformation of optimization prob-
lems via the Lagrangian mechanism into possibly simpler problems, and that op-
timality properties can be estimated via the KKT gap (Theorem 6.27).
Interior point algorithms are practical applications of the duality reasoning;

these seek to find a solution to optimization problems by satisfying the KKT opti-
mality conditions. Here we were able to employ some of the concepts introduced
at an earlier stage, such as predictor corrector methods and numerical ways of
finding roots of equations. These algorithms are robust tools to find solutions
on moderately sized problems (103 � 104 examples). Larger problems require de-
composition methods, to be discussed in Section 10.4, or randomized methods.
The chapter concluded with an overview of randomized methods for maximiz-
ing functions or finding the best subset of elements. These techniques are useful
once datasets are so large that we cannot reasonably hope to find exact solutions
to optimization problems.

6.7 Problems

6.1 (Level Sets �) Given the function f : � 2 � � with f (x) :� �x1�p� �x2�p, for which p
do we obtain a convex function?
Now consider the sets �x� f (x) � c� for some c � 0. Can you give an explicit

parametrization of the boundary of the set? Is it easier to deal with this parametrization?
Can you find other examples (see also [489] and Chapter 8 for details)?

6.2 (Convex Hulls �) Show that for any set X, its convex hull coX is convex. Further-
more, show that coX � X if X is convex.

6.3 (Method of False Position [334] ���) Given a unimodal (possessing one mini-
mum) differentiable function f : � � � , develop a quadratic method for minimizing
f .
Hint: Recall the Newton method. There we used f ��(x) to make a quadratic approxima-

tion of f . Two values of f �(x) are also sufficient to obtain this information, however.
What happens if we may only use f ? What does the iteration scheme look like? See

Figure 6.8 for a hint.

6.4 (Convex Minimization in one Variable ��) Denote by f a convex function on
[a� b]. Show that the algorithm below finds the minimum of f . What is the rate of
convergence in x to argmin x f (x)? Can you obtain a bound in f (x) wrt. minx f (x)?

input a� b� f and threshold �
x1 � a� x2 � a�b

2 � x3 � b and compute f (x1)� f (x2)� f (x3)
repeat
if x3� x2 � x2� x1 then
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x4 � x2�x3
2 and compute f (x4)

else
x4 � x1�x2

2 and compute f (x4)
end if
Keep the two points closest to the point with the minimum value of f (xi) and rename
them such that x1 � x2 � x3.

until x3� x1 � �

6.5 (Newton Method in �
d ��) Extend the Newton method to functions on �

d . What
does the iteration rule look like? Under which conditions does the algorithm converge? Do
you have to extend Theorem 6.13 to prove convergence?

6.6 (Rewriting Quadratic Functionals �) Given a function

f (x)� x�Qx� c�x� d� (6.97)

rewrite it into the form of (6.18). Give explicit expressions for x� � argmin x f (x) and the
difference in the additive constants.

6.7 (Kantorovich Inequality [278] ���) Prove Theorem 6.16. Hint: note that without
loss of generality we may require 	x	2 � 1. Second, perform a transformation of coordi-
nates into the eigensystem of K. Finally, note that in the new coordinate system we are
dealing with convex combinations of eigenvalues �i and 1

�i
. First show (6.24) for only two

eigenvalues. Then argue that only the largest and smallest eigenvalues matter.

6.8 (Random Subsets �) Generate m random numbers drawn uniformly from the inter-
val [0� 1]. Plot their distribution function. Plot the distribution of maxima of subsets of
random numbers. What can you say about the distribution of the maxima? What happens
if you draw randomly from the Laplace distribution, with density p(�) � e�� (for � � 0)?

6.9 (Matching Pursuit [342] ��) Denote by f1� � � � � fM a set of functions � � � , by
�x1� � � � � xm� 
 � a set of locations and by �y1� � � � � ym� 
 � a set of corresponding
observations.
Design a sparse greedy algorithm that finds a linear combination of functions f :�

∑i �i fi minimizing the squared loss between f (xi) and yi.

0 5 10
−50

0

50

100

150

200

0 5 10
−50

0

50

100

150

200

0 5 10
−50

0

50

100

150

200

Figure 6.8 From left to right: Newton method, method of false position, quadratic inter-
polation through 3 points. Solid line: f (x), dash-dotted line: interpolation.
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6.10 (Reduced Set Approximation [474] ��) Let f (x)�∑mi�1 �ik(xi� x) be a kernel ex-
pansion in a Reproducing Kernel Hilbert Space�k (see Section 2.2.3). Give a sparse greedy
algorithm that finds an approximation to f in �k by using fewer terms. See also Chapter
18 for more detail.

6.11 (Equality Constraints in LP and QP ��) Find the dual optimization problem and
the necessary KKT conditions for the following optimization problem:

minimize
x

c�x�

subject to Ax� b � 0�

Cx� d � 0�

(6.98)

where c� x � �
m, b � �

n , d � �
n�

, A � Rn�m and C � �
n�

. Hint: split up the equality
constraints into two inequality constraints. Note that you may combine the two Lagrange
multipliers again to obtain a free variable. Derive the corresponding conditions for

minimize
x

1
2x

�Kx� c�x�

subject to Ax� b � 0�

Cx� d � 0�

(6.99)

where K is a strictly positive definite matrix.

6.12 (Not Strictly Definite Quadratic Parts ���) How do you have to change the dual
of (6.99) if K does not have full rank? Is it better not to dualize in this case? Do the KKT
conditions still hold?

6.13 (Dual Problems of Quadratic Programs ��) Denote by P a quadratic optimiza-
tion problem of type (6.72) and by (�)D the dualization operation. Prove that the following
is true,

((PD)D)D � PD and (((PD)D)D)D � (PD)D� (6.100)

where in general (PD)D 
� P. Hint: use (6.80). Caution: you have to check whether KA�

has full rank.

6.14 (Interior Point Equations for Linear Programs [336] ���) Derive the interior
point equations for linear programs. Hint: use the expansions for the quadratic programs
and note that the reduced KKT system has only a diagonal term where we had K before.
How does the complexity of the problem scale with the size of A?

6.15 (Update Step in Interior Point Codes �) Show that the maximum value of � sat-
isfying (6.84) can be found by

1
�
�max

�
1� (	� 1)�1 min

i�[n]

∆�i
�i

� (	� 1)�1 min
i�[n]

∆�i
�i

�
� (6.101)


