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Algorithm 6.6 Sparse Greedy Algorithm

Require: Set of functions X, Precision ¢, Criterion Q-]
Set X =10
repeat
Choose random subset X' of size m' from X\f( .
Pick & = argmax ., Q[X' U {x}]
X' =X'U{x}
If needed, (re)compute bound on Q[X].
until Q[X] + ¢ > Bound on Q[X]
Output: X, Q[X]

(iv) The set of functions X is typically very large (i.e. more than 10° elements),
yet the individual improvements by f; via Q[X U {x;}] do not differ too much,
meaning that specific x; for which Q[X U {x;}] deviate by a large amount from the
rest of Q[X U {x;}] do not exist.

In this case we may use a sparse greedy algorithm to find near optimal solutions
among the remaining X\ X elements. This combines the idea of an iterative en-
largement of X by one more element at a time (which is feasible since we can
compute Q[X U {f;}] cheaply) with the idea that we need not consider all f; as
possible candidates for the enlargement. This uses the reasoning in Section 6.5.1
combined with the fact that the distribution of the improvements is not too long
tailed (cf. (iv)). The overall strategy is described in Algorithm 6.6.
Problems 6.9 and 6.10 contain more examples of sparse greedy algorithms.

6.6 Summary

This chapter gave an overview of different optimization methods, which form the
basic toolbox for solving the problems arising in learning with kernels. The main
focus was on convex and differentiable problems, hence the overview of properties
of convex sets and functions defined on them.

The key insights in Section 6.1 are that convex sets can be defined by level sets of
convex functions and that convex optimization problems have one global minimum.
Furthermore, the fact that the solutions of convex maximization over polyhedral
sets can be found on the vertices will prove useful in some unsupervised learning
applications (Section 14.4).

Basic tools for unconstrained problems (Section 6.2) include interval cut-
ting methods, the Newton method, Conjugate Gradient descent, and Predictor-
Corrector methods. These techniques are often used as building blocks to solve
more advanced constrained optimization problems.

Since constrained minimization is a fairly complex topic, we only presented a
selection of fundamental results, such as necessary and sufficient conditions in
the general case of nonlinear programming. The KKT conditions for differentiable
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convex functions then followed immediately from the previous reasoning. The
main results are dualization, meaning the transformation of optimization prob-
lems via the Lagrangian mechanism into possibly simpler problems, and that op-
timality properties can be estimated via the KKT gap (Theorem 6.27).

Interior point algorithms are practical applications of the duality reasoning;
these seek to find a solution to optimization problems by satisfying the KKT opti-
mality conditions. Here we were able to employ some of the concepts introduced
at an earlier stage, such as predictor corrector methods and numerical ways of
finding roots of equations. These algorithms are robust tools to find solutions
on moderately sized problems (10° — 10* examples). Larger problems require de-
composition methods, to be discussed in Section 10.4, or randomized methods.
The chapter concluded with an overview of randomized methods for maximiz-
ing functions or finding the best subset of elements. These techniques are useful
once datasets are so large that we cannot reasonably hope to find exact solutions
to optimization problems.

6.7 Problems

6.1 (Level Sets o) Given the function f : R*> — R with f(x) := |x1|F + |xa|?, for which p
do we obtain a convex function?

Now consider the sets {x|f(x) < c} for some ¢ > 0. Can you give an explicit
parametrization of the boundary of the set? Is it easier to deal with this parametrization?
Can you find other examples (see also [489] and Chapter 8 for details)?

6.2 (Convex Hulls o) Show that for any set X, its convex hull co X is convex. Further-
more, show that co X = X if X is convex.

6.3 (Method of False Position [334] eee) Given a unimodal (possessing one mini-
mum) differentiable function f : R — R, develop a quadratic method for minimizing
f.

Hint: Recall the Newton method. There we used f"(x) to make a quadratic approxima-
tion of f. Two values of f'(x) are also sufficient to obtain this information, however.

What happens if we may only use f? What does the iteration scheme look like? See
Figure 6.8 for a hint.

6.4 (Convex Minimization in one Variable ee) Denote by f a convex function on
[a,b]. Show that the algorithm below finds the minimum of f. What is the rate of
convergence in x to argmin . f(x)? Can you obtain a bound in f(x) wrt. min, f(x)?

input a,b, f and threshold e
X1 =4a,x, = “;—b,xg = b and compute f(x1), f(x2), f(x3)
repeat

if x3 — X2 > xo — x1 then



