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tive, i.e., where the we have a strict inequality, and solve the resulting restricted
quadratic program, for instance by conjugate gradient descent. We will encounter
subset selection methods in Chapter 10.

6.5 Maximum Search Problems

In several cases the task of finding an optimal function for estimation purposes
means finding the best element from a finite set, or sometimes finding an optimal
subset from a finite set of elements. These are discrete (sometimes combinatorial)Approximations
optimization problems which are not so easily amenable to the techniques pre-
sented in the previous two sections. Furthermore, many commonly encountered
problems are computationally expensive if solved exactly. Instead, by using prob-
abilistic methods, it is possible to find almost optimal approximate solutions. These
probabilistic methods are the topic of the present section.

6.5.1 Random Subset Selection

Consider the following problem: given a set of m functions, say M :� � f1� � � � � fm�,
and some criterion Q[ f ], find the function f̂ that maximizes Q[ f ]. More formally,

f̂ :� argmax
f�M

Q[ f ]� (6.91)

Clearly, unless we have additional knowledge about the values Q[ fi], we have
to compute all terms Q[ fi] if we want to solve (6.91) exactly. This will cost O(m)
operations. If m is large, which is often the case in practical applications, this
operation is too expensive. In sparse greedy approximation problems (Section
10.2) or in Kernel Feature Analysis (Section 14.4), m can easily be of the order of
105 or larger (here, m is the number of training patterns). Hence we have to look
for cheaper approximate solutions.
The key idea is to pick a random subset M� � M that is sufficiently large,

and take the maximum over M� as an approximation of the maximum over M.
Provided the distribution of the values of Q[ fi] is “well behaved”, i.e., there exists
not a small fraction of Q[ fi] whose values are significantly smaller or larger than
the average, we will obtain a solution that is close to the optimum with high
probability. To formalize these ideas, we need the following result.

Lemma 6.31 (Maximum of Random Variables) Denote by �� � � two independent
random variables on � with corresponding distributions P� �P� � and distribution func-
tions F� � F� � . Then the random variable �̄ :� max(�� � �) has the distribution function
F�̄ � F� F� � .

Proof Note that for a random variable, the distribution function F(�0) is given by
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the probability P�� � �0�. Since � and � � are independent, we may write

F�̄(�̄) � P
�
max(�� � �) � �̄

�
� P

�
� � �̄ and � � � �̄

�
� P

�
� � �̄

�
P
�
� � � �̄

�
� F�(�̄)F� � (�̄)� (6.92)

which proves the claim.

Repeated application of Lemma 6.31 leads to the following corollary.Distribution
Over �̄ is More
Peaked Corollary 6.32 (Maximum Over Identical Random Variables) Let �1� � � � � �m̃ be m̃

independent and identically distributed (iid) random variables, with corresponding distri-
bution function F� . Then the random variable �̄ :� max(�1� � � � � �m̃) has the distribution
function F�̄(�̄) �

�
F�(�̄)

�m̃.
In practice, the random variables �i will be the values of Q[ fi], where the fi are
drawn from the setM. If we draw themwithout replacement (i.e. none of the func-
tions fi appears twice), however, the values after each draw are dependent and we
cannot apply Corollary 6.32 directly. Nonetheless, we can see that the maximum
over draws without replacement will be larger than the maximum with replace-
ment, since recurring observations can be understood as reducing the effective
size of the set to be considered. Thus Corollary 6.32 gives us a lower bound on the
value of the distribution function for draws without replacement. Moreover, for
large m the difference between draws with and without replacement is small.
If the distribution of Q[ fi] is known, we may use the distribution directly to

determine the size m̃ of a subset to be used to find some Q[ fi] that is almost as
good as the solution to (6.91). In all other cases, we have to resort to assessing the
relative quality of maxima over subsets. The following theorem tells us how.Best Element of a

Subset
Theorem 6.33 (Ranks on Random Subsets) Denote by M :� �x1� � � � � xm� � � a set
of cardinality m, and by M̃ � M a random subset of size m̃. Then the probability that
max M̃ is greater equal than n elements of M is at least 1�

�
n
m

�m̃.
Proof We prove this by assuming the converse, namely that max M̃ is smaller
than (m� n) elements of M. For m̃ � 1 we know that this probability is n

m , since
there are n elements to choose from. For m̃ � 1, the probability is the one of
choosing m̃ elements out of a subsetMlow of n elements, rather than allm elements.
Therefore we have that

P(M̃ � Mlow) �

�n
m̃

��m
m̃

� � n
m
�
n� 1
m� 1

� � � � �
n� m̃� 1
m� m̃� 1

�
� n
m

�m̃
�

Consequently the probability that the maximum over M̃ will be larger than n
elements of M is given by 1� P(M̃ � Mlow) � 1�

� n
m

�m̃.
The practical consequence is that we may use 1�

� n
m

�m̃ to compute the required
size of a random subset to achieve the desired degree of approximation. If we
want to obtain results in the n

m percentile range with 1� � confidence, we must
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solve for m̃ � log(1��)
lnn�m . To give a numerical example, if we desire values that

are better than 95% of all other estimates with 1� 0�05 probability, then � � 59
samples are sufficient. This (95%� 95%� 59) rule is very useful in practice.10 A
similar method was used to speed up the process of boosting classifiers in the
MadaBoost algorithm [143]. Furthermore, one could think whether it might not
be useful to recycle old observations rather than computing all 59 values from
scratch. If this can be done cheaply, and under some additional independence
assumptions, subset selection methods can be improved further. For details see
[424] who use the method in the context of memory management for operating
systems.

6.5.2 Random Evaluation

Quite often, the evaluation of the term Q[ f ] itself is rather time consuming, es-
pecially if Q[ f ] is the sum of many (m, for instance) iid random variables. Again,
we can speed up matters considerably by using probabilistic methods. The key
idea is that averages over independent random variables are concentrated, which
is to say that averages over subsets do not differ too much from averages over the
whole set.Approximating

Sums by Partial
Sums

Hoeffding’s Theorem (Section 5.2) quantifies the size of the deviations between
the expectation of a sum of random variables and their values at individual trials.
We will use this to bound deviations between averages over sets and subsets. All
we have to do is translate Theorem 5.1 into a statement regarding sample averages
over different sample sizes. This can be readily constructed as follows:

Corollary 6.34 (Deviation Bounds for Empirical Means [508]) Suppose �1� � � � � �m
are iid bounded random variables, falling into the interval [a� a� b] with probability one.
Denote their average by Qm � 1

m ∑i �i. Furthermore, denote by �s(1)� � � � � �s(m̃) with m̃� m
a subset of the same random variables (with s : �1� � � � � m̃� � �1� � � � �m� being an injec-
tive map, i.e. s(i) � s( j) only if i � j), and Qm̃ � 1

m̃ ∑i �s(i). Then for any � � 0,Deviation of
Subsets

P�Qm � Qm̃ � ��

P�Qm̃ � Qm � ��

��
	 � exp



�

2mm̃�2

(m� m̃)b2

�
� exp

�
�2m

�2

b2

m̃
m

1� m̃
m


(6.93)

Proof By construction E [Qm � Qm̃]� 0, since Qm and Qm̃ are both averages over
sums of random variables drawn from the same distribution. Hence we only have
to rewrite Qm � Qm̃ as an average over (different) random variables to apply
Hoeffding’s bound. Since all Qi are identically distributed, we may pick the first
m̃ random variables, without loss of generality. In other words, we assume that

10. During World War I tanks were often numbered in continuous increasing order. Unfor-
tunately this “feature” allowed the enemy to estimate the number of tanks. How?
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s(i) � i for i � 1� � � � � m̃. Then

Qm � Qm̃ � 1
m

m

∑
i�1

�i �
1
m̃

m̃

∑
i�1

�i �
1
m

m̃

∑
i�1

�
1� m

m̃

�
�i �

1
m

m

∑
i�m̃�1

�i� (6.94)

Thus we may split up Qm � Qm̃ into a sum of m̃ random variables with range
bi � (mm̃ � 1)b, and m� m̃ random variables with range bi � b. We obtain
m

∑
i�1
b2i � b

2m̃
�m
m̃
� 1

�2
� (m� m̃)b2 � b2(m� m̃)

m
m̃
� (6.95)

Substituting this into (5.7) and noting that Qm � Qm̃ � E [Qm � Qm̃] � Qm � Qm̃
completes the proof.

For small m̃m the rhs in (6.93) reduces to exp
�
� 2m̃�2

b2

�
. In other words, deviations on

the subsample m̃ dominate the overall deviation of Qm � Qm̃ from 0. This allows
us to compute a cutoff criterion for evaluating Qm by computing only a subset of
its terms.Cutoff Criterion
We need only solve (6.93) for m̃m . Hence, in order to ensure that Qm̃ is within � of

Qm with probability 1� �, we have to take a fraction m̃
m of samples that satisfies

m̃
m

1� m̃
m

�
b2(ln2� ln�)

2m�2
�: c� and therefore

m̃
m
�

c
1� c

� (6.96)

The fraction m̃
m can be small for large m, which is exactly the case where we need

methods to speed up evaluation.

6.5.3 Greedy Optimization Strategies

Quite often the overall goal is not necessarily to find the single best element xi from
a set X to solve a problem, but to find a good subset X̃ � X of size m̃ according to
some quality criterion Q[X̃]. Problems of this type include approximating a matrix
by a subset of its rows and columns (Section 10.2), finding approximate solutionsApplications
to Kernel Fisher Discriminant Analysis (Chapter 15) and finding a sparse solution
to the problem of Gaussian Process Regression (Section 16.3.4). These all have a
common structure:

(i) Finding an optimal set X̃ � X is quite often a combinatorial problem, or it even
may be NP-hard, since it means selecting m̃ � 	X̃	 elements from a set of m � 	X	
elements. There are

�m
m̃

�
different choices, which clearly prevents an exhaustive

search over all of them. Additionally, the size of m̃ is often not known beforehand.
Hence we need a fast approximate algorithm.

(ii) The evaluation of Q[X̃ 
 �xi�] is inexpensive, provided Q[X̃] has been com-
puted before. This indicates that an iterative algorithm can be useful.

(iii) The value of Q[X], or equivalently how well we would do by taking the
whole set X, can be bounded efficiently by using Q[X̃] (or some by-products of
the computation of Q[M̃]) without actually computing Q[X].
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Algorithm 6.6 Sparse Greedy Algorithm

Require: Set of functions X, Precision �, Criterion Q[�]
Set X̃ � �
repeat
Choose random subset X� of size m� from X�X̃.
Pick x̂ � argmax x�X� Q[X� � �x�]
X�
� X� � �x̂�

If needed, (re)compute bound on Q[X].
until Q[X̃]� � � Bound on Q[X]

Output: X̃�Q[X̃]

(iv) The set of functions X is typically very large (i.e. more than 105 elements),
yet the individual improvements by fi via Q[X̃ 
 �xi�] do not differ too much,
meaning that specific xı̂ for which Q[X̃
�xı̂�] deviate by a large amount from the
rest of Q[X̃ 
 �xi�] do not exist.

In this case we may use a sparse greedy algorithm to find near optimal solutions
among the remaining X�X̃ elements. This combines the idea of an iterative en-
largement of X̃ by one more element at a time (which is feasible since we canIterative

Enlargement of X̃ compute Q[X̃ 
 � fi�] cheaply) with the idea that we need not consider all fi as
possible candidates for the enlargement. This uses the reasoning in Section 6.5.1
combined with the fact that the distribution of the improvements is not too long
tailed (cf. (iv)). The overall strategy is described in Algorithm 6.6.
Problems 6.9 and 6.10 contain more examples of sparse greedy algorithms.

6.6 Summary

This chapter gave an overview of different optimization methods, which form the
basic toolbox for solving the problems arising in learning with kernels. The main
focuswas on convex and differentiable problems, hence the overview of properties
of convex sets and functions defined on them.
The key insights in Section 6.1 are that convex sets can be defined by level sets of

convex functions and that convex optimization problems have one global minimum.
Furthermore, the fact that the solutions of convex maximization over polyhedral
sets can be found on the vertices will prove useful in some unsupervised learning
applications (Section 14.4).
Basic tools for unconstrained problems (Section 6.2) include interval cut-

ting methods, the Newton method, Conjugate Gradient descent, and Predictor-
Corrector methods. These techniques are often used as building blocks to solve
more advanced constrained optimization problems.
Since constrained minimization is a fairly complex topic, we only presented a

selection of fundamental results, such as necessary and sufficient conditions in
the general case of nonlinear programming. The KKT conditions for differentiable


