
6.4 Interior Point Methods 175

In order to compute the dual of (6.72), we have to eliminate x from (6.73) and write
it as a function of �. We obtain

L(x� �)� �
1
2
x�Kx���d (6.78)

� �
1
2
��A�K�1A��

�
d� c�K�1A�

�
��

1
2
c�K�1c� (6.79)

In (6.78) we used (6.74) and (6.76) directly, whereas in order to eliminate x com-
pletely in (6.79) we solved (6.74) for x � �K�1(c� A��). Ignoring constant terms
this leads to the dual quadratic optimization problem,Dual Quadratic

Program
minimize

�
�
1
2
��A�K�1A��

�
d� c�K�1A�

�
��

subject to � � 0�
(6.80)

The surprising fact about the dual problem (6.80) is that the constraints become
significantly simpler than in the primal (6.72). Furthermore, if n � m, we also
obtain a more compact representation of the quadratic term.
There is one aspect in which (6.80) differs from its linear counterpart (6.70): if

we dualize (6.80) again, we do not recover (6.72) but rather a problem very similar
in structure to (6.80). Dualizing (6.80) twice, however, we recover the dual itself
(Problem 6.13 deals with this matter in more detail).

6.4 Interior Point Methods

Let us now have a look at simple, yet efficient optimization algorithms for con-
strained problems: interior point methods.
An interior point is a pair of variables (x� �) that satisfies both primal and dual

constraints. As already mentioned before, finding a set of vectors (x̄� �̄) that satisfy
the KKT conditions is sufficient to obtain a solution in x̄. Hence, all we have to do
is devise an algorithm which solves (6.74)–(6.77), for instance, if we want to solve
a quadratic program. We will focus on the quadratic case — the changes required
for linear programs merely involve the removal of some variables, simplifying the
equations. See Problem 6.14 and [555, 517] for details.

6.4.1 Sufficient Conditions for a Solution

We need a slight modification of (6.74)–(6.77) in order to achieve our goal: rather
than the inequality (6.75), we are better off with an equality and a positivity
constraint for an additional variable, i.e. we transform Ax� d� 0 into Ax� d� ��

176 Optimization

0, where � � 0. Hence we arrive at the following system of equations:

Kx� A��� c � 0 (Dual Feasibility)�

Ax� d� � � 0 (Primal Feasibility)�

��� � 0�

�� � � 0�

(6.81)

Let us analyze the equations in more detail. We have three sets of variables: x� �� �.Optimality as
Constraint
Satisfaction

To determine the latter, we have an equal number of equations plus the positivity
constraints on �� �. While the first two equations are linear and thus amenable to
solution, e.g., by matrix inversion, the third equality ��� � 0 has a small defect:
given one variable, say �, we cannot solve it for � or vice versa. Furthermore, the
last two constraints are not very informative either.
We use a primal-dual path-following algorithm, as proposed in [556], to solve

this problem. Rather than requiring ��� � 0 we modify it to become �i�i � � � 0
for all i � [n], solve (6.81) for a given �, and decrease � to 0 as we go. The
advantage of this strategy is that we may use a Newton-type predictor corrector
algorithm (see Section 6.2.5) to update the parameters x� �� �, which exhibits the
fast convergence of a second order method.

6.4.2 Solving the Equations

For the moment, assume that we have suitable initial values of x� �� �, and �

with �� � � 0. Linearization of the first three equations of (6.81), together with
the modification �i�i � �, yields (we expand x into x� ∆x, etc.):Linearized

Constraints
K∆x� A�∆� � �Kx� A��� c �: �p�

A∆x� ∆� � �Ax� d� � �: �d�

��1i �i∆�i � ∆�i � ���1i � �i � ��1i ∆�i∆�i �: �KKTi for all i

(6.82)

Next we solve for ∆�i to obtain what is commonly referred to as the reduced KKT
system. For convenience we use D :� diag(��11 �1� � � � � �

�1
n �n) as a shorthand;�

K A�

A �D

��
∆x

∆�

�
�

�
�p

�d � �KKT

�
� (6.83)

We apply a predictor-corrector method as in Section 6.2.5. The resulting matrix of
the linear system in (6.83) is indefinite but of full rank, and we can solve (6.83) for
(∆xPred�∆�Pred) by explicitly pivoting for individual entries (for instance, solve for
∆x first and then substitute the result in to the second equality to obtain ∆�).
This gives us the predictor part of the solution. Next we have to correct for the

linearization, which is conveniently achieved by updating �KKT and solving (6.83)
again to obtain the corrector values (∆xCorr�∆�Corr). The value of ∆� is then obtained
from (6.82).

6.4 Interior Point Methods 177

Next, we have to make sure that the updates in �� � do not cause the estimates
to violate their positivity constraints. This is done by shrinking the length of
(∆x�∆��∆�) by some factor 	 � 0, such thatUpdate in x� �

min
�
�1� 	∆�1

�1
� � � � �

�n� 	∆�n
�n

�
�1� 	∆�1

�1
� � � � �

�n� 	∆�n
�n

�
�
� (6.84)

Of course, only the negative ∆ terms pose a problem, since they lead the param-
eter values closer to 0, which may lead them into conflict with the positivity con-
straints. Typically [556, 502], we choose
 � 0�05. In other words, the solution will
not approach the boundaries in �� � by more than 95%. See Problem 6.15 for a
formula to compute 	.

6.4.3 Updating �

Next we have to update �. Here we face the following dilemma: if we decrease
� too quickly, we will get bad convergence of our second order method, since
the solution to the problem (which depends on the value of �) moves too quickly
away from our current set of parameters (x� �� �). On the other hand, we do not
want to spend too much time solving an approximation of the unrelaxed (� � 0)
KKT conditions exactly. A good indication is how much the positivity constraints
would be violated by the current update. Vanderbei [556] proposes the following
update of �:Tightening the

KKT Conditions
� �

���

n

�
1� 	

10� 	

�2
� (6.85)

The first term gives the average value of satisfaction of the condition �i�i � �

after an update step. The second term allows us to decrease � rapidly if good
progress was made (small (1�)2). Experimental evidence shows that it pays to
be slightly more conservative, and to use the predictor estimates of �� � for (6.85)
rather than the corresponding corrector terms.8 This imposes little overhead for
the implementation.

6.4.4 Initial Conditions and Stopping Criterion

To provide a complete algorithm, we have to consider twomore things: a stopping
criterion and a suitable start value. For the latter, we simply solve a regularized
version of the initial reduced KKT system (6.83). This means that we replace K by
K� 1, use (x� �) in place of ∆x�∆�, and replace D by the identity matrix. Moreover,
�p and �d are set to the values they would have if all variables had been set to 0Regularized KKT

System before, and finally �KKT is set to 0. In other words, we obtain an initial guess of

8. In practice it is often useful to replace (1��) by (1� ���) for some small � � 0, in order
to avoid � � 0.

178 Optimization

(x� �� �) by solving�
K� 1 A�

A �1

��
x

�

�
�

�
�c

�d

�
� (6.86)

and � � �Ax� d. Since we have to ensure positivity of �� �, we simply replace

�i �max(�i� 1) and �i �max(�i� 1)� (6.87)

This heuristic solves the problem of a suitable initial condition.
Regarding the stopping criterion, we recall Theorem 6.27, and in particular

(6.62). Rather than obtaining bounds on the precision of parameters, we want
to make sure that f (x) is close to its optimal value f (x̄). From (6.64) we know,
provided the feasibility constraints are all satisfied, that the value of the dual
objective function is given by f (x)� ∑ni�1 �ici(x). We may use the latter to bound
the relative size of the gap between primal and dual objective function by

Gap(x� �)�
2
���� f (x)�

�
f (x)�

n
∑
i�1

�ici(x)
�����

� f (x)��
����
�
f (x)�

n
∑
i�1

�ici(x)
�����

�

�
n
∑
i�1

�ici(x)���� f (x)� 1
2

n
∑
i�1

�ici(x)
����
� (6.88)

For the special case where f (x) � 1
2x

�Kx� c�x as in (6.72), we know by virtue of
(6.73) that the size of the feasibility gap is given by ���, and therefore

Gap(x� �)�
����� 1

2x
�Kx� c�x� 1

2�
��

�� � (6.89)

In practice, a small number is usually added to the denominator of (6.89) in order
to avoid divisions by 0 in the first iteration. The quality of the solution is typically
measured on a logarithmic scale by � log10 Gap(x� �), the number of significantNumber of

Significant
Figures

figures.9Wewill come back to specific versions of such interior point algorithms in
Chapter 10, and show how Support Vector Regression and Classification problems
can be solved with them.
Primal-Dual path following methods are certainly not the only algorithms that

can be employed for minimizing constrained quadratic problems. Other variants,
for instance, are Barrier Methods [282, 45, 557], which minimize the unconstrained
problem

f (x)� �
n

∑
i�1
f ln (�ci(x)) for � � 0� (6.90)

Active set methods have also been used with success in machine learning [369,
284]. These select subsets of variables x for which the constraints ci are not ac-

9. Interior point codes are very precise. They usually achieve up to 8 significant figures,
whereas iterative approximation methods do not normally exceed more than 3 significant
figures on large optimization problems.

6.5 Maximum Search Problems 179

tive, i.e., where the we have a strict inequality, and solve the resulting restricted
quadratic program, for instance by conjugate gradient descent. We will encounter
subset selection methods in Chapter 10.

6.5 Maximum Search Problems

In several cases the task of finding an optimal function for estimation purposes
means finding the best element from a finite set, or sometimes finding an optimal
subset from a finite set of elements. These are discrete (sometimes combinatorial)Approximations
optimization problems which are not so easily amenable to the techniques pre-
sented in the previous two sections. Furthermore, many commonly encountered
problems are computationally expensive if solved exactly. Instead, by using prob-
abilistic methods, it is possible to find almost optimal approximate solutions. These
probabilistic methods are the topic of the present section.

6.5.1 Random Subset Selection

Consider the following problem: given a set of m functions, say M :� � f1� � � � � fm�,
and some criterion Q[f], find the function f̂ that maximizes Q[f]. More formally,

f̂ :� argmax
f�M

Q[f]� (6.91)

Clearly, unless we have additional knowledge about the values Q[fi], we have
to compute all terms Q[fi] if we want to solve (6.91) exactly. This will cost O(m)
operations. If m is large, which is often the case in practical applications, this
operation is too expensive. In sparse greedy approximation problems (Section
10.2) or in Kernel Feature Analysis (Section 14.4), m can easily be of the order of
105 or larger (here, m is the number of training patterns). Hence we have to look
for cheaper approximate solutions.
The key idea is to pick a random subset M� � M that is sufficiently large,

and take the maximum over M� as an approximation of the maximum over M.
Provided the distribution of the values of Q[fi] is “well behaved”, i.e., there exists
not a small fraction of Q[fi] whose values are significantly smaller or larger than
the average, we will obtain a solution that is close to the optimum with high
probability. To formalize these ideas, we need the following result.

Lemma 6.31 (Maximum of Random Variables) Denote by �� � � two independent
random variables on � with corresponding distributions P� �P� � and distribution func-
tions F� � F� � . Then the random variable �̄ :� max(�� � �) has the distribution function
F�̄ � F� F� � .

Proof Note that for a random variable, the distribution function F(�0) is given by

