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Algorithm 6.5 Predictor Corrector Method

Require: x(, Precision €
Seti =0
repeat
Expand f into f(xi) + fsimple(ga xi) + T(éa xi)-
Predictor Solve f(xi) + fsimple (€774, x7) = 0 for £Pred.
Corrector Solve f(x;) + fomple(€<", x;) + T(&Ped, x;) = 0 for £,
Xig1 = X; + gcorr_
i=1+1.
until [f(x;)] <e
Output: x;

where fsimple(§, X) contains the simple, possibly low order, part of f, and T(, x)
the higher order terms, such that fmp1e(0,x) = T(0,x) = 0. While in the previous
example we introduced higher order terms into f that were not present before (f is
only quadratic), usually such terms will already exist anyway. Hence the corrector
step will just eliminate additional lower order terms without too much additional
error in the approximation.

We will encounter such methods for instance in the context of interior point
algorithms (Section 6.4), where we have to solve a set of quadratic equations.

6.3 Constrained Problems

After this digression on unconstrained optimization problems, let us return to

constrained optimization, which makes up the main body of the problems we

will have to deal with in learning (e.g., quadratic or general convex programs for

Support Vector Machines). Typically, we have to deal with problems of type (6.6).

For convenience we repeat the problem statement:
mini){nize fx)

(6.37)
subjectto  c;(x) < O0foralli € [n].

Here f and ¢; are convex functions and 1 € N. In some cases3, we additionally have

equality constraints e;(x) = 0 for some j € [n']. Then the optimization problem can

be written as
miniinize f(x),
subject to  ¢;(x) < 0foralli € [n], (6.38)
ej(x) =0forall j € ['].

3. Note that it is common practice in Support Vector Machines to write ¢; as positivity
constraints by using concave functions. This can be fixed by a sign change, however.
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Before we start minimizing f, we have to discuss what optimality means in this
case. Clearly f'(x) = 0 is too restrictive a condition. For instance, f’ could point
into a direction which is forbidden by the constraints ¢; and e;. Then we could
have optimality, even though f’ # 0. Let us analyze the situation in more detail.

6.3.1 Optimality Conditions

We start with optimality conditions for optimization problems which are indepen-
dent of their differentiability. While it is fairly straightforward to state sufficient
optimality conditions for arbitrary functions f and c;, we will need convexity and
“reasonably nice” constraints (see Lemma 6.23) to state necessary conditions. This
is not a major concern, since for practical applications, the constraint qualification
criteria are almost always satisfied, and the functions themselves are usually con-
vex and differentiable. Much of the reasoning in this section follows [345], which
should also be consulted for further references and detail.

Some of the most important sufficient criteria are the Kuhn-Tucker# saddle point
conditions [312]. As indicated previously, they are independent of assumptions on
convexity or differentiability of the constraints c; or objective function f.

Theorem 6.21 (Kuhn-Tucker Saddle Point Condition [312, 345]) Assume an opti-
mization problem of the form (6.37), where f : R™ — R and ¢; : R" — R for i € [n]
are arbitrary functions, and a Lagrangian

L(x,a) == f(x) + i a;ci(x) where a; > 0. (6.39)
=1

If a pair of variables (X, &) with X € R" and o&; > 0 for all i € [n] exists, such that for all
x € R" and a € [0, 00)",

L(x,0) < L(x, &) < L(x, &) (Saddle Point) (6.40)
then X is a solution to (6.37).

The parameters «; are called Lagrange multipliers. As described in the later chap-
ters, they will become the coefficients in the kernel expansion in SVM.

Proof The proof follows [345]. Denote by (¥, &) a pair of variables satisfying
(6.40). From the first inequality it follows that

E(Oli —a;)ci(x) < 0. (6.41)
=1

Since we are free to choose a; > 0, we can see (by setting all but one of the terms «;
to &; and the remaining one to a;; = &; + 1) that ¢;(x) < 0 for all i € [n]. This shows
that x satisfies the constraints, i.e. it is feasible.

4. An earlier version is due to Karush [283]. This is why often one uses the abbreviation
KKT (Karush-Kuhn-Tucker) rather than KT to denote the optimality conditions.
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Additionally, by setting one of the a; to 0, we see that &;c;(¥) > 0. The only way
to satisfy this is by having

a;ci(X¥) =0 foralli € [n]. (6.42)

Eq. (6.42) is often referred to as the KKT condition [283, 312]. Finally, combining
(6.42) and ¢;(x) < 0 with the second inequality in (6.40) yields f(x) < f(x) for all
feasible x. This proves that X is optimal. [

We can immediately extend Theorem 6.21 to accommodate equality constraints by
splitting them into the conditions ¢;(x) < 0 and ¢;(x) > 0. We obtain:

Theorem 6.22 (Equality Constraints) Assume an optimization problem of the form
(6.38), where f,ci,ej: R" — R for i € [n] and j € [n'] are arbitrary functions, and a
Lagrangian

L(x,a):= f(x)+ i a;ci(x) + i Bjej(x) where o; > 0 and B; € R. (6.43)
= =

If a set of variables (x, &, B) with ¥ € R", & € [0,00), and B € R exists such that for all
x €R", a €[0,00)", and § € R",

L(%,a,B) < L(x,&,B8) < L(x, &, B), (6.44)

then X is a solution to (6.38).

Now we determine when the conditions of Theorem 6.21 are necessary. We
will see that convexity and sufficiently “nice” constraints are needed for (6.40)
to become a necessary condition. The following lemma (see [345]) describes three
constraint qualifications, which will turn out to be exactly what we need.

Lemma 6.23 (Constraint Qualifications) Denote by X C R" a convex set, and by
C1y-+.,Cn : X — R n convex functions defining a feasible region by

X :={x|x € X and c;(x) <0 forall i € [n]}. (6.45)
Then the following additional conditions on c; are connected by (i) <= (ii) and (iii) =
().

(i) There exists an x € X such that for all i € [n] c;(x) < 0 (Slater’s condition [500]).

(if) For all nonzero o € [0, 00)" there exists an x € X such that Si'; a;ci(x) <0 (Karlin's
condition [281]).

(iii) The feasible region X contains at least two distinct elements, and there exists an x € X
such that all c; are strictly convex at x wrt. X (Strict constraint qualification).

The connection (i) <= (ii) is also known as the Generalized Gordan Theorem
[164]. The proof can be skipped if necessary. We need an auxiliary lemma which
we state without proof (see [345, 435] for details).
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Figure 6.7 Two hyperplanes (and their nor-
mal vectors) separating the convex hull of a
finite set of points from the origin.

Lemma 6.24 (Separating Hyperplane Theorem) Denote by X € R" a convex set not
containing the origin 0. Then there exists a hyperplane with normal vector o € R™ such
that " x > 0 for all x € X.

See also Figure 6.7.

Proof of Lemma 6.23. We prove {(i) <= (ii) } by showing {(i) = (ii)} and { not
(i) = not (i1) }.

(i) = (ii) For a point x € X with ¢;(x) < 0, for all i € [n] we have that a;c;(x) > 0
implies o; = 0.

(i) = (i) Assume that there is no x with ¢;(x) < 0 for all i € [n]. Hence the set
I' := {7|y € R" and there exists some x € X with 7y, > ¢;(x) foralli € [n]}  (6.46)

is convex and does not contain the origin. The latter follows directly from the
assumption. For the former take v,7’ € T and A € (0,1) to obtain

Ayi+ (@ = A)y! > Aci(x) + (1 — XNei(x) > ¢;(Ax 4+ (1 — N)x). (6.47)

Now by Lemma 6.24, there exists some a € R" such that o'y > 0 and ||a|*> = 1 for
all v € I. Since each of the v, for y € I can be arbitrarily large (with respect to the
other coordinates), we conclude a; > 0 for all i € [n].

Denote by ¢ := infyex S/ 4 ojci(x) and by ¢’ := infyera' . One can see that by
construction § = ¢'. By Lemma 6.24 o was chosen such that §' > 0, and hence
d > 0. This contradicts (ii), however, since it implies the existence of a suitable «

with a;c;(x) > 0 for all x.
(iii) = (i) Since X is convex we get for all ¢; and for any A € (0, 1):

Ax+ (1 =X)x"€ Xand 0> Aci(x) + (1 — Nci(x") > c;(Ax + (1 = N)x'). (6.48)

This shows that Ax + (1 — \)x’ satisfies (i) and we are done.
m

We proved Lemma 6.23 as it provides us with a set of constraint qualifications
(conditions on the constraints) that allow us to determine cases where the KKT
saddle point conditions are both necessary and sufficient. This is important, since
we will use the KKT conditions to transform optimization problems into their
duals, and solve the latter numerically. For this approach to be valid, however, we
must ensure that we do not change the solvability of the optimization problem.
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Theorem 6.25 (Necessary KKT Conditions [312, 553, 281]) Under the assumptions
and definitions of Theorem 6.21 with the additional assumption that f and c; are convex
on the convex set X C R™ (containing the set of feasible solutions as a subset) and that c;
satisfy one of the constraint qualifications of Lemma 6.23, the saddle point criterion (6.40)
is necessary for optimality.

Proof Denote by x the solution to (6.37), and by X’ the set
X":= XN {x|x € X with f(x) — f(x) <0and ¢;(x) < 0foralli € [n]}. (6.49)

By construction ¥ € X'. Furthermore, there exists no x' € X’ such that all inequality
constraints including f(x) — f(¥) are satisfied as strict inequalities (otherwise X
would not be optimal). In other words, X’ violates Slater’s conditions (i) of Lemma
6.23 (where both ( flx)—f (32)) and c(x) together play the role of c;(x)), and thus also
Karlin’s conditions (ii). This means that there exists a nonzero vector (&g, &) € R"!
with nonnegative entries such that

ao(f(x) — (%) + i a;ci(x) >0 forall x € X. (6.50)
=1

In particular, for x = X we get 3/, @;c;(¥) > 0. In addition, since X is a solution to
(6.37), we have c;(x) < 0. Hence 37" &;c;(¥) = 0. This allows us to rewrite (6.50) as

80f()+ 3 aie(0) > Gof(®) + 3 e (). (651)
i=1 1=1

This looks almost like the first inequality of (6.40), except for the & term (which
we will return to later). But let us consider the second inequality first.

Again, since c;(X) < 0 we have 3! ; a;c;(¥) < 0 for all a; > 0. Adding a0 f(X) on
both sides of the inequality and ¥ ; &;c;(¥) on the rhs yields

G0f@ + 3 e > aof(D) + 3 aue(d. (652)
=1 1=1

This is almost all we need for the first inequality of (6.40) S1f ay > 0 we can divide
(6.51) and (6.52) by &, and we are done.

When &g = 0, then this implies the existence of & € R" with nonnegative entries
satisfying 37 ; &;c;(x) > 0 for all x € X. This contradicts Karlin’s constraint quali-
fication condition (ii), which allows us to rule out this case. ]

6.3.2 Duality and KKT-Gap

Now that we have formulated necessary and sufficient optimality conditions (The-
orem 6.21 and 6.25) under quite general circumstances, let us put them to practical

5. The two inequalities (6.51) and (6.52) are also known as the Fritz-John saddle point nec-
essary optimality conditions [269], which play a similar role as the saddle point conditions
for the Lagrangian (6.39) of Theorem 6.21.
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use for convex differentiable optimization problems. We first derive a more prac-
tically useful form of Theorem 6.21. Our reasoning is as follows: eq. (6.40) implies
that L(x, @) is a saddle point in terms of (¥, &). Hence, all we have to do is write the
saddle point conditions in the form of derivatives.

Theorem 6.26 (KKT for Differentiable Convex Problems [312]) A solution to the
optimization problem (6.37) with convex, differentiable f,c; is given by &, if there exists
some & € R" with o; > 0 for all i € [n] such that the following conditions are satisfied:

O, L(x,&) = 0, f(%) + 2 &,;0yc;(¥) = 0 (Saddle Point in %), (6.53)
1=1

0o, L(x, @) = c;(¥) < 0 (Saddle Point in &), (6.54)

2 &;c;(x) = 0 (Vanishing KKT-Gap). (6.55)

=1

Proof The easiest way to prove Theorem 6.26 is to show that for any x € X, we
have f(x) — f(¥) > 0. Due to convexity we may linearize and obtain

f(x) — f(@) > (0. f(2)) " (x — %) (6.56)
— =3 & 0D - D) (657)

1=1
>~ S a0 — (@) (6.59)

Il
i

iC,‘(X) Z 0. (659)

Il
\
.M:
Q1

Il
A

Here we used the convexity and differentiability of f to arrive at the rhs of (6.56)
and (6.58). To obtain (6.57) we exploited the fact that at the saddle point 0, f(X) can
be replaced by the corresponding expansion in 0,¢;(¥); thus we used (6.53). Finally,
for (6.59) we used the fact that the KKT gap vanishes at the optimum (6.55) and
that the constraints are satisfied (6.54). ]

In other words, we may solve a convex optimization problem by finding (¥, &)
that satisfy the conditions of Theorem 6.26. Moreover, these conditions, together
with the constraint qualifications of Lemma 6.23, ensure necessity.

Note that we transformed the problem of minimizing functions into one of
solving a set of equations, for which several numerical tools are readily available.
This is exactly how interior point methods work (see Section 6.4 for details on
how to implement them). Necessary conditions on the constraints similar to those
discussed previously can also be formulated (see [345] for a detailed discussion).

The other consequence of Theorem 6.26, or rather of the definition of the La-
grangian L(x, a), is that we may bound f(¥) = L(X, &) from above and below with-
out explicit knowledge of f(x).

Theorem 6.27 (KKT-Gap) Assume an optimization problem of type (6.37), where both f
and c; are convex and differentiable. Denote by x its solution. Then for any set of variables
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(x, ) with a; > 0, and for all i € [n] satisfying

3. L(x,a) =0, (6.60)
0o, L(x, ) <0 foralli € [n], (6.61)
we have
)= F@D = F0)+ S aiei(x). (6.62)

=

Strictly speaking, we only need differentiability of f and ¢; at X. However, since X
is only known after the optimization problem has been solved, this is not a very
useful condition.

Proof The first part of (6.62) follows from the fact that x € X, so that x satisfies
the constraints. Next note that L(¥, &) = f(¥) where (¥, &) denotes the saddle point
of L. For the second part note that due to the saddle point condition (6.40), we
have for any a with o; >0,

f(x) =L(x,a) > L(x,0) > inf L(x', ). (6.63)

The function L(x’, ) is convex in x’ since both f’ and the constraints c; are convex
and all ; > 0. Therefore (6.60) implies that x minimizes L(x', ). This proves the
second part of (6.63), which in turn proves the second inequality of (6.62). ]

Hence, no matter what algorithm we are using in order to solve (6.37), we may
always use (6.62) to assess the proximity of the current set of parameters to the so-
lution. Clearly, the relative size of ¥, a;c;i(x) provides a useful stopping criterion
for convex optimization algorithms.

Finally, another concept that is useful when dealing with optimization problems
is that of duality. This means that for the primal minimization problem considered
so far, which is expressed in terms of x, we can find a dual maximization problem
in terms of a by computing the saddle point of the Lagrangian L(x, o), and elim-
inating the primal variables x. We thus obtain the following dual maximization
problem from (6.37):

maximize L(x,a) = f(x)+ iaici(x)a
1=1

x € X,a; > 0foralli€ [n] } (6.64)

where (x,a) € Y:=< (x,0)
and 0,L(x,a) =0

We state without proof a theorem guaranteeing the existence of a solution to (6.64).

Theorem 6.28 (Wolfe [607]) Recall the definition of X (6.45) and of the optimization
problem (6.37). Under the assumptions that X is an open set, X satisfies one of the
constraint qualifications of Lemma 6.23, and f,c; are all convex and differentiable, there
exists an & € R" such that (¥, &) solves the dual optimization problem (6.64) and in
addition L(X, &) = f(X).
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In order to prove Theorem 6.28 we first have to show that some (&,&) exists
satisfying the KKT conditions, and then use the fact that the KKT-Gap at the saddle
point vanishes.

6.3.3 Linear and Quadratic Programs

Let us analyze the notions of primal and dual objective functions in more detail by
looking at linear and quadratic programs. We begin with a simple linear setting.®

T

minimize c¢'x
X

(6.65)
subjectto Ax+d <0

where ¢,x € R", d € R" and A € R"™, and where Ax + d < 0 is a shorthand for
ETzl A”x] +d; <Oforallie [1’[]

It is far from clear that (6.65) always has a solution, or indeed a minimum. For
instance, the set of x satisfying Ax + d < 0 might be empty, or it might contain rays
going to infinity in directions where ¢ " x keeps increasing. Before we deal with this
issue in more detail, let us compute the sufficient KKT conditions for optimality,
and the dual of (6.65). We may use (6.26) since (6.65) is clearly differentiable and
convex. In particular we obtain:

Theorem 6.29 (KKT Conditions for Linear Programs) A sufficient condition for a
solution to the linear program (6.65) to exist is that the following four conditions are
satisfied for some (x, ) € R™" where a > 0:

8. L(x,a) = &, [ch +al(Ax + d)] = ATa+c=0, (6.66)
BuL(x, ) = Ax +d <0, (6.67)

a (Ax+d)=0, (6.68)

a>0. (6.69)

Then the minimum is given by ¢ x.

Note that, depending on the choice of A and d, there may not always exist an x
such that Ax +d < 0, in which case the constraint does not satisfy the conditions
of Lemma 6.23. In this situation, no solution exists for (6.65). If a feasible x exists,
however, then (projections onto lower dimensional subspaces aside) the constraint
qualifications are satisfied on the feasible set, and the conditions above are neces-
sary. See [334, 345, 555] for details.

6. Note that we encounter a small clash of notation in (6.65), since ¢ is used as a symbol
for the loss function in the remainder of the book. This inconvenience is outweighed,
however, by the advantage of consistency with the standard literature (e.g., [345, 45, 555])
on optimization. The latter will allow the reader to read up on the subject without any need
for cumbersome notational changes.
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Next we may compute Wolfe’s dual optimization problem by substituting (6.66)
into L(x, a). Consequently, the primal variables x vanish, and we obtain a maxi-
mization problem in terms of o only:

maximize d'a,

(6.70)
subjectto A'a+c=0and a>0.

Note that the number of variables and constraints has changed: we started with
m variables and n constraints. Now we have n variables together with m equality
constraints and n inequality constraints. While it is not yet completely obvious in
the linear case, dualization may render optimization problems more amenable to
numerical solution (the contrary may be true as well, though).

What happens if a solution X to the primal problem (6.65) exists? In this case we
know (since the KKT conditions of Theorem 6.29 are necessary and sufficient) that
there must be an @ solving the dual problem, since L(x, ) has a saddle point at
(%, ).

If no feasible point of the primal problem exists, there must exist, by (a small
modification of) Lemma 6.23, some a € R" with o > 0 and at least one «; > 0 such
that a”(Ax + d) > 0 for all x. This means that for all x, the Lagrangian L(x, a) is
unbounded from above, since we can make a ' (Ax + d) arbitrarily large. Hence
the dual optimization problem is unbounded. Using analogous reasoning, if the
primal problem is unbounded, the dual problem is infeasible.

Let us see what happens if we dualize (6.70) one more time. First we need
more Lagrange multipliers, since we have two sets of constraints. The equality
constraints can be taken care of by an unbounded variable x’ (see Theorem 6.22
for how to deal with equalities). For the inequalities o > 0, we introduce a second
Lagrange multiplier y € R". After some calculations and resubstitution into the
corresponding Lagrangian, we get

maximize c¢'x/,

6.71
subjectto Ax'+d+y=0andy>0. (671

We can remove y > 0 from the set of variables by transforming Ax’ + d + y into
Ax +d < 0; thus we recover the primal optimization problem (6.65).7

The following theorem gives an overview of the transformations and relations
between primal and dual problems (see also Table 6.2). Although we only derived
these relations for linear programs, they also hold for other convex differentiable
settings [45].

Theorem 6.30 (Trichotomy) For linear and convex quadratic programs exactly one of

7. This finding is useful if we have to dualize twice in some optimization settings (see
Chapter 10), since then we will be able to recover some of the primal variables without
further calculations if the optimization algorithm provides us with both primal and dual
variables.
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Table 6.2 Connections between primal and dual linear and convex quadratic programs.

Primal Optimization Problem (in x) | Dual Optimization Problem (in &) |
solution exists solution exists and extrema are equal
no solution exists maximization problem has unbounded

objective from above or is infeasible

minimization problem has unbounded | no solution exists
objective from below or is infeasible

inequality constraint inequality constraint
equality constraint free variable
free variable equality constraint

the following three alternatives must hold:

1. Both feasible regions are empty.

2. Exactly one feasible region is empty, in which case the objective function of the other
problem is unbounded in the direction of optimization.

3. Both feasible regions are nonempty, in which case both problems have solutions and
their extrema are equal.

We conclude this section by stating primal and dual optimization problems, and
the sufficient KKT conditions for convex quadratic optimization problems. To
keep matters simple we only consider the following type of optimization problem
(other problems can be rewritten in the same form; see Problem 6.11 for details):
minimize 1x"Kx+c'x,
P (6.72)
subjectto Ax+d <0.

Here K is a strictly positive definite matrix, x,c € R”, A € R**"™, and d € R". Note
that this is clearly a differentiable convex optimization problem. To introduce a
Lagrangian we need corresponding multipliers o € R" with a > 0. We obtain

L(x,a) = %xTKx +c'x+a’(Ax +4d). (6.73)

Next we may apply Theorem 6.26 to obtain the KKT conditions. They can be stated
in analogy to (6.66)—(6.68) as

O0yL(x,0) = 0, |[c'x+a  (Ax +d) + %xTKx =Kx+ATa+c=0, (6.74)
OuL(x,a) = Ax+d <0, (6.75)
a'(Ax+d)=0, (6.76)

a > 0. (6.77)
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In order to compute the dual of (6.72), we have to eliminate x from (6.73) and write
it as a function of a. We obtain

1
L(x,a) = — szKx +a'd (6.78)
= —%aTATK’lAa + [d - cTK*1AT} a— %CTK*%. (6.79)
In (6.78) we used (6.74) and (6.76) directly, whereas in order to eliminate x com-
pletely in (6.79) we solved (6.74) for x = —K !(c + A" a). Ignoring constant terms
this leads to the dual quadratic optimization problem,

1
minimize — a’ATK'Aa+ [d - cTKflAT} @,
[e73

(6.80)
subjectto «a > 0.

The surprising fact about the dual problem (6.80) is that the constraints become
significantly simpler than in the primal (6.72). Furthermore, if n < m, we also
obtain a more compact representation of the quadratic term.

There is one aspect in which (6.80) differs from its linear counterpart (6.70): if
we dualize (6.80) again, we do not recover (6.72) but rather a problem very similar
in structure to (6.80). Dualizing (6.80) twice, however, we recover the dual itself
(Problem 6.13 deals with this matter in more detail).

6.4 Interior Point Methods

Let us now have a look at simple, yet efficient optimization algorithms for con-
strained problems: interior point methods.

An interior point is a pair of variables (x, o) that satisfies both primal and dual
constraints. As already mentioned before, finding a set of vectors (¥, &) that satisfy
the KKT conditions is sufficient to obtain a solution in x. Hence, all we have to do
is devise an algorithm which solves (6.74)—(6.77), for instance, if we want to solve
a quadratic program. We will focus on the quadratic case — the changes required
for linear programs merely involve the removal of some variables, simplifying the
equations. See Problem 6.14 and [555, 517] for details.

6.4.1 Sufficient Conditions for a Solution
We need a slight modification of (6.74)-(6.77) in order to achieve our goal: rather

than the inequality (6.75), we are better off with an equality and a positivity
constraint for an additional variable, i.e. we transform Ax +d < 0into Ax +d+ & =



