
154 Optimization

Figure 6.4 A convex function on a convex
polyhedral set. Note that theminimum of this
function is unique, and that the maximum
can be found at one of the vertices of the con-
straining domain.

Reconstructing
Convex Sets from
Vertices

The proof is slightly technical, and not central to the understanding of kernel
methods. See Rockafellar [435, Chapter 18] for details, alongwith further theorems
on convex functions. We now proceed to the second key theorem in this section.

Theorem 6.12 (Maxima of Convex Functions on Convex Compact Sets) Denote
by X a compact convex set in �, by �X the vertices of X, and by f a convex function
on X. Then

sup� f (x)�x � X� � sup� f (x)�x � �X�� (6.10)

Proof Application of Theorem 6.10 and Theorem 6.11 proves the claim, since
under the assumptions made on X, we have X � co (�X). Figure 6.4 depicts the
situation graphically.

6.2 Unconstrained Problems

After the characterization and uniqueness results (Theorem 6.5, Corollary 6.6, and
Lemma 6.7) of the previous section, we will now study numerical techniques to
obtain minima (or maxima) of convex optimization problems. While the choice
of algorithms is motivated by applicability to kernel methods, the presentation
here is not problem specific. For details on implementation, and descriptions of
applications to learning problems, see Chapter 10.

6.2.1 Functions of One Variable

We begin with the easiest case, in which f depends on only one variable. Some of
the concepts explained here, such as the interval cutting algorithm and Newton’s
method, can be extended to the multivariate setting (see Problem 6.5). For the sake
of simplicity, however, we limit ourselves to the univariate case.
Assume we want to minimize f : � � � on the interval [a� b] � � . If we cannot

make any further assumptions regarding f , then this problem, as simple as it may
seem, cannot be solved numerically.
If f is differentiable, the problem can be reduced to finding f �(x) � 0 (see Prob-Continuous

Differentiable
Functions

lem 6.4 for the general case). If in addition to the previous assumptions, f is con-
vex, then f � is nondecreasing, and we can find a fast, simple algorithm (Algorithm

6.2 Unconstrained Problems 155

731 2456

Figure 6.5 Interval Cutting Algorithm. The selection of points is ordered according to the
numbers beneath (points 1 and 2 are the initial endpoints of the interval).

Algorithm 6.1 Interval Cutting

Require: a� b� Precision �
Set A � a� B � b
repeat
if f �

�
A�B
2

�
� 0 then

B � A�B
2

else
A � A�B

2
end if

until (B� A)min(� f �(A)�� � f �(B)�)� �

Output: x � A�B
2

6.1) to solve our problem (see Figure 6.5).Interval Cutting
This technique works by halving the size of the interval that contains the min-

imum x� of f , since it is always guaranteed by the selection criteria for B and A
that x� � [A� B]. We use the following Taylor series expansion to determine the
stopping criterion.

Theorem 6.13 (Taylor Series) Denote by f : � � � a function that is d times differen-
tiable. Then for any x� x� � � , there exists a � with ��� � �x� x��, such that

f (x�) �
d�1

∑
i�0

1
i!
f (i)(x)(x�� x)i � �d

d!
f (d)(x� �)� (6.11)

Now we may apply (6.11) to the stopping criterion of Algorithm 6.1. We denote
by x� the minimum of f (x). Expanding f around f (x�), we obtain for some �A �
[A� x�� 0] that f (A) � f (x�)� �A f �(x�� �A), and therefore,

� f (A)� f (x�)� � ��A�� f �(x�� �A)� � (B� A)� f �(A)��
Taking the minimum over �A� B� shows that Algorithm 6.1 stops once f is �-closeProof of Linear

Convergence to its minimal value. The convergence of the algorithm is linear with constant 0�5,
since the intervals [A� B] for possible x� are halved at each iteration.

156 Optimization

Algorithm 6.2Newton’s Method
Require: x0, Precision �
Set x � x0
repeat
x � x� f �(x)

f ��(x)
until � f �(x)� � �

Output: x

In constructing the interval cutting algorithm, we in fact wasted most of the
information obtained in evaluating f � at each point, by only making use of the
sign of f . In particular, we could fit a parabola to f and thereby obtain a method
that converges more rapidly. If we are only allowed to use f and f �, this leads to
theMethod of False Position (see [334] or Problem 6.3).
Moreover, if we may compute the second derivative as well, we can use (6.11) to

obtain a quadratic approximation of f and use the latter to find the minimum of f .
This is commonly referred to as Newton’s method (see Section 16.4.1 for a practicalNewton’s

Method application of the latter to classification problems). We expand f (x) around x0;

f (x) 	 f (x0)� (x� x0) f �(x0)� (x� x0)
2

2
f ��(x0)� (6.12)

Minimization of the expansion (6.12) yields

x � x0� f �(x0)
f ��(x0)

� (6.13)

Hence, we hope that if the approximation (6.12) is good, we will obtain an algo-
rithm with fast convergence (Algorithm 6.2). Let us analyze the situation in more
detail. For convenience, we state the result in terms of g :� f �, since finding a zero
of g is equivalent to finding a minimum of f .

Theorem 6.14 (Convergence of Newton Method) Let g : � � � be a twice continu-
ously differentiable function, and denote by x� � � a point with g�(x�)
� 0 and g(x�)� 0.
Then, provided x0 is sufficiently close to x�, the sequence generated by (6.13) will converge
to x� at least quadratically.Quadratic

Convergence
Proof For convenience, denote by xn the value of x at the nth iteration. As before,
we apply Theorem 6.13. We now expand g(x�) around xn. For some � � [0� x�� xn],
we have

g(xn) � g(xn)� g(x�) � g(xn)�
�
g(xn)� g�(xn)(x�� xn)� �2

2
g��(xn)

�
� (6.14)

and therefore by substituting (6.14) into (6.13),

xn�1� x� � xn � x�� g(xn)
g�(xn)

� �2
g��(xn)
2g�(xn)

� (6.15)

Since by construction ��� � �xn � x��, we obtain a quadratically convergent algo-
rithm in �xn� x��, provided that

���(xn � x�) g��(xn)2g�(xn)

��� � 1.

6.2 Unconstrained Problems 157

Region of
Convergence

In other words, if the Newton method converges, it converges more rapidly than
interval cutting or similar methods. We cannot guarantee beforehand that we are
really in the region of convergence of the algorithm. In practice, if we apply
the Newton method and find that it converges, we know that the solution has
converged to theminimizer of f . Formore information on optimization algorithms
for unconstrained problems see [173, 530, 334, 15, 159, 45].
In some cases we will not know an upper bound on the size of the interval to be

analyzed for the presence of minima. In this situation we may, for instance, startLine Search
with an initial guess of an interval, and if no minimum can be found strictly inside
the interval, enlarge it, say by doubling its size. See [334] for more information on
this matter. Let us now proceed to a technique which is quite popular (albeit not
always preferable) in machine learning.

6.2.2 Functions of Several Variables: Gradient Descent

Gradient descent is one of the simplest optimization techniques to implement for
minimizing functions of the form f : �� � , where � may be � N , or indeed any
set on which a gradient may be defined and evaluated. In order to avoid further
complications we assume that the gradient f �(x) exists and that we are able to
compute it.
The basic idea is as follows: given a location xn at iteration n, compute the

gradient gn :� f �(xn), and updateDirection of
Steepest Descent

xn�1 � xn � �gn (6.16)

such that the decrease in f is maximal over all � � 0. For the final step, one of the
algorithms from Section 6.2.1 can be used. It is straightforward to show that f (xn)
is a monotonically decreasing series, since at each step the line search updates xn�1
in such a way that f (xn�1) � f (xn). Such a value of � must exist, since (again by
Theorem 6.13) we may expand f (xn � �gn) in terms of � around xn, to obtain1

f (xn� �gn) � f (xn)� ��gn�2 � O(�2)� (6.17)

As usual � � � is the Euclidean norm. For small � the linear contribution in the
Taylor expansion will be dominant, hence for some � � 0 we have f (xn � �gn) �
f (xn). It can be shown [334] that after a (possibly infinite) number of steps, gradient
descent (see Algorithm 6.3) will converge.Problems of

Convergence In spite of this, the performance of gradient descent is far from optimal. De-
pending on the shape of the landscape of values of f , gradient descent may take
a long time to converge. Figure 6.6 shows two examples of possible convergence
behavior of the gradient descent algorithm.

1. To see that Theorem 6.13 applies in (6.17), note that f (xn � �gn) is a mapping � � �

when viewed as a function of �.

158 Optimization

Algorithm 6.3 Gradient Descent
Require: x0, Precision �
n � 0
repeat
Compute g � f �(xn)
Perform line search on f (xn � �g) for optimal �.
xn�1 � xn � �g
n � n� 1

until � f �(xn)� � �

Output: xn

Figure 6.6 Left: Gradient descent takes a long time to converge, since the landscape of
values of f forms a long and narrow valley, causing the algorithm to zig-zag along the
walls of the valley. Right: due to the homogeneous structure of the minimum, the algorithm
converges after very few iterations. Note that in both cases, the next direction of descent is
orthogonal to the previous one, since line search provides the optimal step length.

6.2.3 Convergence Properties of Gradient Descent

Let us analyze the convergence properties of Algorithm 6.3 in more detail. To keep
matters simple, we assume that f is a quadratic function, i.e.

f (x) �
1
2
(x� x�)�K(x� x�)� c0� (6.18)

where K is a positive definite symmetric matrix (cf. Definition 2.4) and c0 is
constant.2 This is clearly a convex function with minimum at x�, and f (x�) � c0.
The gradient of f is given by

g :� f �(x) � K(x� x�)� (6.19)

To find the update of the steepest descent we have to minimize

f (x� �g)�
1
2
(x� �g� x�)K(x� �g� x�) � 1

2
�2g�Kg� �g�g� (6.20)

2. Note that we may rewrite (up to a constant) any convex quadratic function f (x) �
x�Kx� c�x� d in the form (6.18), simply by expanding f around its minimum value x�.

6.2 Unconstrained Problems 159

By minimizing (6.20) for �, the update of steepest descent is given explicitly by

xn�1 � xn � g�g
g�Kg

g� (6.21)

Improvement per
Step Substituting (6.21) into (6.18) and subtracting the terms f (xn) and f (xn�1) yields

the following improvement after an update step

f (xn)� f (xn�1) � (xn � x�)�K g�g
g�Kg

g� 1
2

�
g�g
g�Kg

�2
g�Kg

�
1
2
(g�g)2

g�Kg
� f (xn)

�
(g�g)2

(g�Kg)(g�K�1g)

�
� (6.22)

Thus the relative improvement per iteration depends on the value of t(g) :�
(g�g)2

(g�Kg)(g�K�1g) . In order to give performance guarantees we have to find a lower
bound for t(g). To this end we introduce the condition of a matrix.

Definition 6.15 (Condition of a Matrix) Denote by K a matrix and by �max and �min
its largest and smallest singular values (or eigenvalues if they exist) respectively. The
condition of a matrix is defined as

cond K :�
�max
�min

� (6.23)

Clearly, as cond K decreases, different directions are treated in a more homoge-
neous manner by x�Kx. In particular, note that smaller cond K correspond to less
elliptic contours in Figure 6.6. Kantorovich proved the following inequality which
allows us to connect the condition number with the convergence behavior of gra-
dient descent algorithms.

Theorem 6.16 (Kantorovich Inequality [278]) Denote by K � �
m�m (typically the

kernel matrix) a strictly positive definite symmetric matrix with largest and smallest
Lower Bound for
Improvement

eigenvalues �max and �min. Then the following inequality holds for any g � �
m:

(g�g)2

(g�Kg)(g�K�1g)

 4�min�max
(�min� �max)2

 1
cond K

� (6.24)

We typically denote by g the gradient of f . The second inequality follows immedi-
ately from Definition 6.15; the proof of the first inequality is more technical, and is
not essential to the understanding of the situation. See Problem 6.7 and [278, 334]
for more detail.
A brief calculation gives us the correct order of magnitude. Note that for any

x, the quadratic term x�Kx is bounded from above by �max�x�2, and likewise
x�K�1x � ��1min�x�2. Hence we bound the relative improvement t(g) (as defined
below (6.22)) by 1	(cond K) which is almost as good as the second term in (6.24)
(the latter can be up to a factor of 4 better for �min� �max).
This means that gradient descent methods perform poorly if some of the eigen-

values of K are very small in comparison with the largest eigenvalue, as is usually
the case with matrices generated by positive definite kernels (and as sometimes

160 Optimization

desired for learning theoretical reasons); see Chapter 4 for details. This is one of
the reasons why many gradient descent algorithms for training Support Vector
Machines, such as the Kernel AdaTron [183, 12] or AdaLine [185], exhibit poor
convergence. Section 10.6.1 deals with these issues, and sets up the gradient de-
scent directions both in the Reproducing Kernel Hilbert Space� and in coefficient
space �m .

6.2.4 Functions of Several Variables: Conjugate Gradient Descent

Let us now look at methods that are better suited to minimizing convex functions.
Again, we start with quadratic forms. The key problem with gradient descent is
that the quotient between the smallest and the largest eigenvalue can be very large,
which leads to slow convergence. Hence, one possible technique is to rescale � by
some matrix M such that the condition of K � �

m�m in this rescaled space, which
is to say the condition of M�KM, is much closer to 1 (in numerical analysis this is
often referred to as preconditioning [247, 423, 530]). In addition, we would like to
focus first on the largest eigenvectors of K.
A key tool is the concept of conjugate directions. The basic idea is that rather than

using the metric of the normal dot product x�x� � x�1x� (1 is the unit matrix) we
use the metric imposed by K, i.e. x�Kx�, to guide our algorithm, and we introduce
an equivalent notion of orthogonality with respect to the new metric.

Definition 6.17 (Conjugate Directions) Given a symmetric matrix K � �
m�m, any

two vectors v� v� � �
m are called K-orthogonal if v�Kv� � 0.

Likewise, we can introduce notions of a basis and of linear independence with
respect to K. The following theorem establishes the necessary identities.

Theorem 6.18 (Orthogonal Decompositions in K) Denote by K � �
m�m a strictly

positive definite symmetric matrix and by v1� � � � � vm a set of mutually K-orthogonal and
nonzero vectors. Then the following properties hold:

(i) The vectors v1� � � � � vm form a basis.

(ii) Any x � �
m can be expanded in terms of vi by

x �
m

∑
i�1
vi
v�i Kx
v�i Kvi

� (6.25)

In particular, for any y � Kx, we can find x by

x �
m

∑
i�1
vi
v�i y
v�i Kvi

� (6.26)

Proof (i) Since we havem vectors in �m , all we have to show is that the vectors viLinear
Independence are linearly independent. Assume that there exist some
i � � such that∑mi�1
ivi �

6.2 Unconstrained Problems 161

0. Then due to K-orthogonality, we have

0 � v�j K

�
m

∑
i�1

ivi

�
�

m

∑
i�1

iv�j Kvi �
 jv�j Kvj for all j� (6.27)

Hence
 j � 0 for all j. This means that all vj are linearly independent.

(ii) The vectors �v1� � � � � vm� form a basis. Therefore we may expand any x � �
m

as a linear combination of vj, i.e. x� ∑mi�1
ivi. Consequently we can expand v
�

j Kx
in terms of v�j Kvi, and we obtain

v�j Kx � v
�

j K

�
m

∑
i�1

ivi

�
�
 jv�j Kvj� (6.28)

Basis Expansion
Solving for
 j proves the claim.

(iii) Let y � Kx. Since the vectors vi form a basis, we can expand x in terms of
i.
Substituting this definition into (6.28) proves (6.26).

The practical consequence of this theorem is that, provided we know a set of K-
orthogonal vectors vi, we can solve the linear equation y � Kx via (6.26). Fur-
thermore, we can also use it to minimize quadratic functions of the form f (x) �
1
2 x

�Kx� c�x. The following theorem tells us how.

Theorem 6.19 (Deflation Method) Denote by v1� � � � � vm a set of mutually K-orthogonal
vectors for a strictly positive definite symmetric matrix K � �

m�m. Then for any x0 � �
m

the following method finds xi that minimize f (x) � 1
2x

�Kx� c�x in the linear manifold
�i :� x0� span�v1� � � � � vi�.Optimality in

Linear Space
xi :� xi�1� vi

g�i�1vi
v�i Kvi

where gi�1 � f �(xi�1) for all i � 0� (6.29)

Proof We use induction. For i � 0 the statement is trivial, since the linear mani-
fold consists of only one point.
Assume that the statement holds for i. Since f is convex, we only need prove

that the gradient of f (xi) is orthogonal to span�v1� � � � � vi�. In that case no further
improvement can be gained on the linear manifold �i. It suffices to show that for
all j � i� 1,
0 � v�j gi� (6.30)

Additionally, we may expand xi�1 to obtainGradient Descent
in Rescaled Space

v�j gi � v
�

j

�
Kxi�1� c� Kvi

g�i�1vi
v�i Kvi

�
� v�j gi�1� (g�i�1vi)

v�j Kvi
v�i Kvi

� (6.31)

For j � i both terms cancel out. For j � i both terms vanish due to the induction
assumption. Since the vectors v j form a basis �m � �

m , xm is a minimizer of f .

In a nutshell, Theorem 6.19 already contains the Conjugate Gradient descent al-

162 Optimization

Algorithm 6.4 Conjugate Gradient Descent

Require: x0
Set i � 0
g0 � f �(x0)
v0 � g0
repeat
xi�1 � xi ��ivi where �i � �

g�i vi
v�i Kvi

gi�1 � f �(xi�1)

vi�1 � �gi�1 � �ivi where �i �
g�i�1Kvi
v�i Kvi

.
i � i� 1

until gi � 0
Output: xi

gorithm: in each step we perform gradient descent with respect to one of the K-
orthogonal vectors vi, which means that after n steps we will reach the minimum.
We still lack a method to obtain such a K-orthogonal basis of vectors vi. It turns out
that we can get the latter directly from the gradients gi. Algorithm 6.4 describes the
procedure.
All we have to do is prove that Algorithm 6.4 actually does what it is required

to do, namely generate a K-orthogonal set of vectors vi, and perform deflation in
the latter. To achieve this, the vi are obtained by an orthogonalization procedure
akin to Gram-Schmidt orthogonalization.

Theorem 6.20 (Conjugate Gradient) Assume we are given a quadratic convex func-
tion f (x)� 1

2x
�Kx� c�x, to which we apply conjugate gradient descent for minimization

purposes. Then algorithm 6.4 is a deflation method, and unless gi � 0, we have for every
0 � i � m,
(i) span�g0� � � � � gi� � span�v0� � � � � vi� � span�g0�Kg0� � � � �Kig0�.
(ii) The vectors vi are K-orthogonal.

(iii) The equations in Algorithm 6.4 for
i and �i can be replaced by
i �
g�i gi
v�i Kvi

and

�i �
g�i�1gi�1
g�i gi

.

(iv) After i steps, xi is the solution in the manifold x0� span�g0�Kg0� � � � �Ki�1g0�.

Proof (i) and (ii) We use induction. For i � 0 the statements trivially hold since
v0 � g0. For i note that by construction (see Algorithm 6.4) gi�1 � Kxi�1� c � gi �

iKvi, hence span�g0� � � � � gi�1� � span�g0�Kg0� � � � �Ki�1g0�. Since vi�1 ��gi�1�
�ivi the same statement holds for span�v0� � � � � vi�1�. Moreover, the vectors gi are
linearly independent or 0 due to Theorem 6.19.
Finally v�j Kvi�1 � �v�j Kgi�1 � �iv�j Kvi � 0, since for j � i both terms cancel out,
and for j � i both terms individually vanish (due to Theorem 6.19 and (i)).

(iii) We have �g�i vi � g�i gi � �i�1g�i vi�1 � g
�

i gi, since the second term vanishes
due to Theorem 6.19. This proves the result for
i.

6.2 Unconstrained Problems 163

Table 6.1 Non-quadratic modifications of conjugate gradient descent.

Generic Method Compute Hessian Ki :� f ��(xi) and update �i� �i with

�i � �
g�i vi
v�i Kivi

�i �
g�i�1Kivi
v�i Kivi

This requires calculation of the Hessian at each iteration.
Fletcher-Reeves [173] Find �i via a line search and use Theorem 6.20 (iii) for �i

�i � argmin
�
f (xi ��vi)

�i �
g�i�1gi�1
g�i gi

Polak-Ribiere [414] Find �i via a line search
�i � argmin

�
f (xi ��vi)

�i �
(gi�1�gi)

�gi�1
g�i gi

Experimentally, Polak-Ribiere tends to be better than
Fletcher-Reeves.

For �i note that g�i�1Kvi �
�1i g
�

i�1(gi�1 � gi) �
�1i g
�

i�1gi�1. Substitution of the
value of
i proves the claim.

(iv) Again, we use induction. At step i � 1 we compute the solution within the
space spanned by g0.

We conclude this section with some remarks on the optimality of conjugate gradi-
ent descent algorithms, and how they can be extended to arbitrary convex func-
tions.
Due to Theorems 6.19 and 6.20, we can see that after i iterations, the con-Space of Largest

Eigenvalues jugate gradient descent algorithm finds a solution on the linear manifold x0 �
span�g0�Kg0� � � � �Ki�1g0�. This means that the solutions will be mostly aligned
with the largest eigenvalues of K, since after multiple application of K to any arbi-
trary vector g0, the largest eigenvectors dominate. Nonetheless, the algorithm here
is significantly cheaper than computing the eigenvalues of K, and subsequently
minimizing f in the subspace corresponding to the largest eigenvalues. For more
detail see [334]
In the case of general convex functions, the assumptions of Theorem 6.20 are

no longer satisfied. In spite of this, conjugate gradient descent has proven to
be effective even in these situations. Additionally, we have to account for some
modifications. Basically, the update rules for gi and vi remain unchanged but the
parameters
i and �i are computed differently. Table 6.1 gives an overview of
different methods. See [173, 334, 530, 414] for details.Nonlinear

Extensions
6.2.5 Predictor Corrector Methods

As we go to higher order Taylor expansions of the function f to be minimized
(or set to zero), the corresponding numerical methods become increasingly com-

164 Optimization

plicated to implement, and require an ever increasing number of parameters to
be estimated or computed. For instance, a quadratic expansion of a multivariateIncreasing the

Order function f : �m � � requires m � m terms for the quadratic part (the Hessian),
whereas the linear part (the gradient) can be obtained by computing m terms.
Since the quadratic expansion is only an approximation for most non-quadratic
functions, this is wasteful (for interior point programs, see Section 6.4). We might
instead be able to achieve roughly the same goal without computing the quadratic
term explicitly, or more generally, obtain the performance of higher order methods
without actually implementing them.
This can in fact be achieved using predictor-corrector methods. These work

by computing a tentative update xi � xpredi�1 (predictor step), then using xpredi�1 to
account for higher order changes in the objective function, and finally obtaining
a corrected value xcorri�1 based on these changes. A simple example illustrates the
method. Assume we want to find the solution to the equationPredictor

Corrector
Methods for
Quadratic
Equations

f (x) � 0 where f (x)� f0� ax�
1
2
bx2� (6.32)

We assume a� b� f0� x � � . Exact solution of (6.32) requires taking a square root. Let
us see whether we can find an approximate method that avoids this (in general
b will be an m�m matrix, so this is a worthwhile goal). The predictor corrector
approach works as follows: first solve

f0� ax � 0 and hence xpred � � f0a � (6.33)

Second, substitute xpred into the nonlinear parts of (6.32) to obtain

f0� axcorr�
1
2
b
�
f0
a

�2
� 0 and hence xcorr � � f0

a

�
1�

1
2
b f0
a2

�
� (6.34)

Comparing xpred and xcorr, we see that 12
b f0
a2 is the correction term that takes the

effect of the changes in x into account.No Quadratic
Residuals Since neither of the two values (xpred or xcorr) will give us the exact solution

to f (x) � 0 in just one step, it is worthwhile having a look at the errors of both
approaches.

f (xpred) �
1
2
b f 20
a2

and f (xcorr) � 2
f 2(xpred)
f0

�
f 3(xpred)
f 20

� (6.35)

We can check that if b f0a2 � 2� 2
�
2, the corrector estimate will be better than the

predictor one. As our initial estimate f0 decreases, this will be the case. Moreover,
we can see that f (xcorr) only contains terms in x that are of higher order than
quadratic. This means that even though we did not solve the quadratic form
explicitly, we eliminated all corresponding terms.
The general scheme is described in Algorithm 6.5. It is based on the assumption

that f (x� �) can be split up into

f (x� �) � f (x)� fsimple(�� x)� T(�� x)� (6.36)

6.3 Constrained Problems 165

Algorithm 6.5 Predictor Corrector Method
Require: x0, Precision �
Set i � 0
repeat
Expand f into f (xi)� fsimple(�� xi)� T(�� xi).

Predictor Solve f (xi)� fsimple(�pred� xi) � 0 for �pred.
Corrector Solve f (xi)� fsimple(�corr� xi)� T(�pred� xi) � 0 for �corr.

xi�1 � xi � �corr.
i � i� 1.

until � f (xi)� � �

Output: xi

where fsimple(�� x) contains the simple, possibly low order, part of f , and T(�� x)
the higher order terms, such that fsimple(0� x) � T(0� x) � 0. While in the previous
example we introduced higher order terms into f that were not present before (f is
only quadratic), usually such terms will already exist anyway. Hence the corrector
step will just eliminate additional lower order terms without too much additional
error in the approximation.
We will encounter such methods for instance in the context of interior point
algorithms (Section 6.4), where we have to solve a set of quadratic equations.

6.3 Constrained Problems

After this digression on unconstrained optimization problems, let us return to
constrained optimization, which makes up the main body of the problems we
will have to deal with in learning (e.g., quadratic or general convex programs for
Support Vector Machines). Typically, we have to deal with problems of type (6.6).
For convenience we repeat the problem statement:

minimize
x

f (x)

subject to ci(x) � 0 for all i � [n]�
(6.37)

Here f and ci are convex functions and n � � . In some cases3, we additionally have
equality constraints e j(x) � 0 for some j � [n�]. Then the optimization problem can
be written as

minimize
x

f (x)�

subject to ci(x) � 0 for all i � [n]�
e j(x) � 0 for all j � [n�]�

(6.38)

3. Note that it is common practice in Support Vector Machines to write ci as positivity
constraints by using concave functions. This can be fixed by a sign change, however.

