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optimization problems (Section 6.2) are less common in this book and will only
be required in the gradient descent methods of Section 10.6.1, and the Gaussian
Process implementation methods of Section 16.4.

The present chapter is intended as an introduction to the basic concepts of
optimization. It is relatively self-contained, and requires only basic skills in linear
algebra and multivariate calculus. Section 6.3 is somewhat more technical, Section
6.4 requires some additional knowledge of numerical analysis, and Section 6.5
assumes some knowledge of probability and statistics.

6.1 Convex Optimization

Definition and
Construction of
Convex Sets and
Functions

In the situations considered in this book, learning (or equivalently statistical es-
timation) implies the minimization of some risk functional such as Remp[f] or
Rreg[f] (cf. Chapter 4). While minimizing an arbitrary function on a (possibly not
even compact) set of arguments can be a difficult task, and will most likely exhibit
many local minima, minimization of a convex objective function on a convex set
exhibits exactly one global minimum. We now prove this property.

Definition 6.1 (Convex Set) A set X in a vector space is called convex if for any x,x" €
X and any X € [0, 1], we have
Ax+ (1 —X\)x € X. (6.1)

Definition 6.2 (Convex Function) A function f defined on a set X (note that X need
not be convex itself) is called convex if, for any x,x" € X and any X\ € [0,1] such that
Ax + (1 — N)x' € X, we have

FOux+ (1= M) < AfG) + (1 — M), 6.2)
A function f is called strictly convex if for x # x" and X € (0,1) (6.2) is a strict inequality.



6.1 Convex Optimization 15

Intersections

—_

\\“‘:‘\‘s“:' %
‘\\\‘8\‘:8‘:‘::8\\\‘3&“0 ', 0

AR
RIS

0.4 OO KK -
. SSURE RTINS, 9.9, 2

NS 2
0.2 NN

%
o
:s
R
=
\”
QR
R
|
-~ o =2 P

-2 0 2

Figure 6.1 Left: Convex Function in two variables. Right: the corresponding convex level
sets {x|f(x) < c}, for different values of c.

There exist several ways to define convex sets. A convenient method is to define
them via below sets of convex functions, such as the sets for which f(x) < ¢, for
instance.

Lemma 6.3 (Convex Sets as Below-Sets) Denote by f : X — R a convex function on
a convex set X.. Then the set
X:={x|x € Xand f(x) <c}, forall c € R, (6.3)

1S convex.

Proof We must show condition (6.1). For any x,x’ € X, we have f(x), f(x') <c.
Moreover, since f is convex, we also have

FOx+ 1= Xx") <Af(x)+ 1 =N f(x') <cforall X €[0,1]. (6.4)

Hence, for all A € [0,1], we have (Ax + (1 — A)x') € X, which proves the claim.
Figure 6.1 depicts this situation graphically.

Lemma 6.4 (Intersection of Convex Sets) Denote by X, X' C X two convex sets. Then
XN X' is also a convex set.

Proof Given any x,x’ € XN X/, then for any A € [0, 1], the point x) := Ax + (1 —
A)x' satisfies x) € X and x) € X', hence also x) € XN X'.

See also Figure 6.2. Now we have the tools to prove the central theorem of this
section.

Theorem 6.5 (Minima on Convex Sets) If the convex function f : X — R has a min-
imum on a convex set X C X, then its arguments x € X, for which the minimum value
is attained, form a convex set. Moreover, if f is strictly convex, then this set will contain
only one element.
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Figure 6.2 Left: a convex set; observe that lines with points in the set are fully contained
inside the set. Right: the intersection of two convex sets is also a convex set.

f(x)

Figure 6.3 Note that the maximum
of a convex function is obtained at
the ends of the interval [a, b].

\ \
a b x

Proof Denoteby ¢ the minimum of f on X. Then the set X,,, := {x|x € X and f(x) <
c} is clearly convex. In addition, X,, N X is also convex, and f(x) = ¢ for all
x € X,;, N X (otherwise ¢ would not be the minimum).

If f is strictly convex, then for any x,x" € X, and in particular for any x,x’ €
X N X, we have (for x # x" and all A € (0,1)),

FAx+0=x) < Af()+ A =Nf) =X+ (1= ANec=c. (6.5)

This contradicts the assumption that X,, N X contains more then one element.
]

A simple application of this theorem is in constrained convex minimization. Recall
that the notation [n], used below, is a shorthand for {1,...,n}.

Corollary 6.6 (Constrained Convex Minimization) Given the set of convex func-
tions f,c1,...,c, on the convex set X, the problem

minimize  f(x),
p (6.6)
subject to ¢;(x) <0 foralli € [n],

has as its solution a convex set, if a solution exists. This solution is unique if f is strictly
convex.

Many problems in Mathematical Programming or Support Vector Machines can
be cast into this formulation. This means either that they all have unique solutions
(if f is strictly convex), or that all solutions are equally good and form a convex set
(if f is merely convex).

We might ask what can be said about convex maximization. Let us analyze a
simple case first: convex maximization on an interval.
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Lemma 6.7 (Convex Maximization on an Interval) Denote by f a convex function
on [a,b] € R Then the problem of maximizing f on [a,b] has f(a) and f(b) as solutions.

Proof Any x € [a,b] can be written as =24 + (1 — 2=%) b, and hence

b— b—
<P )+ (1 e ) £0) < max(£(@), £0). (67)
Therefore the maximum of f on [a, b] is obtained on one of the points a, b. [

We will next show that the problem of convex maximization on a convex set is
typically a hard problem, in the sense that the maximum can only be found at one
of the extreme points of the constraining set. We must first introduce the notion of
vertices of a set.

Definition 6.8 (Vertex of a Set) A point x € X is a vertex of X if, for all x' € X with
x' # x, and for all X > 1, the point Ax + (1 — A\)x" ¢ X.

This definition implies, for instance, that in the case of X being an ¢, ball, the
vertices of X make up its surface. In the case of an £, ball, we have 2" vertices in
n dimensions, and for an ¢; ball, we have only 2n of them. These differences will
guide us in the choice of admissible sets of parameters for optimization problems
(see, e.g., Section 14.4). In particular, there exists a connection between suprema
on sets and their convex hulls. To state this link, however, we need to define the
latter.

Definition 6.9 (Convex Hull) Denote by X a set in a vector space. Then the convex hull
co X is defined as

coX = {32

Theorem 6.10 (Suprema on Sets and their Convex Hulls) Denote by X a set and by
co X its convex hull. Then for a convex function f

supq{ f(x)|x € X} = sup{f(x)|x € co X}. (6.9)

1=1 1=

fzzaix,-whereneN,aiEOand Ea,-zl}. (6.8)
=

Proof Recall that the below set of convex functions is convex (Lemma 6.3), and
that the below set of f with respect to ¢ = sup{f(x)|x € X} is by definition a
superset of X. Moreover, due to its convexity, it is also a superset of co X. |

This theorem can be used to replace search operations over sets X by subsets
X" C X, which are considerably smaller, if the convex hull of the latter generates
X. In particular, the vertices of convex sets are sufficient to reconstruct the whole
set.

Theorem 6.11 (Vertices) A compact convex set is the convex hull of its vertices.
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Figure 6.4 A convex function on a convex
polyhedral set. Note that the minimum of this
function is unique, and that the maximum
can be found at one of the vertices of the con-
straining domain.

(O)

The proof is slightly technical, and not central to the understanding of kernel
methods. See Rockafellar [435, Chapter 18] for details, along with further theorems
on convex functions. We now proceed to the second key theorem in this section.

Theorem 6.12 (Maxima of Convex Functions on Convex Compact Sets) Denote
by X a compact convex set in X, by |X the vertices of X, and by f a convex function
on X. Then

sup{f(x)|x € X} = sup{f(x)|x € | X}. (6.10)

Proof Application of Theorem 6.10 and Theorem 6.11 proves the claim, since
under the assumptions made on X, we have X = co(|X). Figure 6.4 depicts the
situation graphically. [

6.2 Unconstrained Problems

Continuous
Differentiable
Functions

After the characterization and uniqueness results (Theorem 6.5, Corollary 6.6, and
Lemma 6.7) of the previous section, we will now study numerical techniques to
obtain minima (or maxima) of convex optimization problems. While the choice
of algorithms is motivated by applicability to kernel methods, the presentation
here is not problem specific. For details on implementation, and descriptions of
applications to learning problems, see Chapter 10.

6.2.1 Functions of One Variable

We begin with the easiest case, in which f depends on only one variable. Some of
the concepts explained here, such as the interval cutting algorithm and Newton’s
method, can be extended to the multivariate setting (see Problem 6.5). For the sake
of simplicity, however, we limit ourselves to the univariate case.

Assume we want to minimize f : R — R on the interval [a,b] C R. If we cannot
make any further assumptions regarding f, then this problem, as simple as it may
seem, cannot be solved numerically.

If f is differentiable, the problem can be reduced to finding f'(x) = 0 (see Prob-
lem 6.4 for the general case). If in addition to the previous assumptions, f is con-
vex, then f' is nondecreasing, and we can find a fast, simple algorithm (Algorithm



