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appear only in dot products, so we can again compute the dot products in feature
space, replacing

�
xi� x j

�
by k(xi� xj) (where the xi belong to the input domain �,

and the xi in the feature space�).
As Figure 5.5 shows, the VC dimension bound, using the radius R computed in

this way, gives a rather good prediction of the error on an independent test set.

5.7 Summary

In this chapter, we introduced the main ideas of statistical learning theory. For
learning processes utilizing empirical risk minimization to be successful, we need
a version of the law of large numbers that holds uniformly over all functions the
learning machine can implement. For this uniform law to hold true, the capacity
of the set of functions that the learning machine can implement has to be “well-
behaved.” We gave several capacity measures, such as the VC dimension, and
illustrated how to derive bounds on the test error of a learning machine, in terms
of the training error and the capacity. We have, moreover, shown how to bound
the capacity of margin classifiers, a result which will later be used to motivate the
Support Vector algorithm. Finally, we described an application in which a uniform
convergence bound was used for model selection.
Whilst this discussion of learning theory should be sufficient to understand

most of the present book, we will revisit learning theory at a later stage. In Chap-
ter 12, we will present some more advanced material, which applies to kernel
learning machines. Specifically, we will introduce another class of generalization
error bound, building on a concept of stability of algorithms minimizing regular-
ized risk functionals. These bounds are proven using concentration-of-measure in-
equalities, which are themselves generalizations of Chernoff and Hoeffding type
bounds. In addition, we will discuss leave-one-out and PAC-Bayesian bounds.

5.8 Problems

5.1 (No Free Lunch in Kernel Choice ��) Discuss the relationship between the “no-
free-lunch Theorem” and the statement that there is no free lunch in kernel choice.

5.2 (Error Counting Estimate [136] �) Suppose you are given a test set with n elements
to assess the accuracy of a trained classifier. Use the Chernoff bound to quantify the
probability that the mean error on the test set differs from the true risk by more than � � 0.
Argue that the test set should be as large as possible, in order to get a reliable estimate of
the performance of a classifier.

5.3 (The Tainted Die ��) A con-artist wants to taint a die such that it does not generate
any ’6’ when cast. Yet he does not know exactly how. So he devises the following scheme:
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he makes some changes and subsequently rolls the die 20 times to check that no ’6’ occurs.
Unless pleased with the outcome, he changes more things and repeats the experiment.
How long will it take on average, until, even with a perfect die, he will be convinced that

he has a die that never generates a ’6’? What is the probability that this already happens
at the first trial? Can you improve the strategy such that he can be sure the die is ’well’
tainted (hint: longer trials provide increased confidence)?

5.4 (Chernoff Bound for the Deviation of Empirical Means ��) Use (5.6) and the
triangle inequality to prove that
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Next, note that the bound (5.66) is symmetric in how it deals with the two halves of the
sample. Therefore, since the two events�
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are disjoint, argue that (5.32) holds true. See also Corollary 6.34 below.

5.5 (Consistency and Uniform Convergence ��) Why can we not get a bound on the
generalization error of a learning algorithm by applying (5.11) to the outcome of the
algorithm? Argue that since we do not know in advance which function the learning
algorithm returns, we need to consider the worst possible case, which leads to uniform
convergence considerations.
Speculate whether there could be restrictions on learning algorithms which imply that

effectively, empirical risk minimization only leads to a subset of the set of all possible
functions. Argue that this amounts to restricting the capacity. Consider as an example
neural networks with back-propagation: if the training algorithm always returns a local
minimum close to the starting point in weight space, then the network effectively does not
explore the whole weight (i.e., function) space.

5.6 (Confidence Interval and Uniform Convergence �) Derive (5.36) from (5.35).

5.7 (Representer Algorithms for Minimizing VC Bounds ÆÆÆ) Construct kernel al-
gorithms that are more closely aligned with VC bounds of the form (5.36). Hint: in the
risk functional, replace the standard SV regularizer �w�2 with the second term of (5.36),
bounding the shattering coefficient with the VC dimension bound (Theorem 5.5). Use the
representer theorem (Section 4.2) to argue that the minimizer takes the form of a kernel
expansion in terms of the training examples. Find the optimal expansion coefficients by
minimizing the modified risk functional over the choice of expansion coefficients.
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5.8 (Bounds in Terms of the VC Dimension �) From (5.35) and (5.36), derive bounds
in terms of the growth function and the VC dimension, using the results of Section 5.5.6.
Discuss the conditions under which they hold.

5.9 (VC Theory and Decision Theory ���) (i) Discuss the relationship between mini-
max estimation (cf. footnote 7 in Chapter 1) and VC theory. Argue that the VC bounds can
be made “worst case” over distributions by picking suitable capacity measures. However,
they only bound the difference between empirical risk and true risk, thus they are only
“worst case” for the variance term, not for the bias (or empirical risk). The minimization
of an upper bound on the risk of the form (5.36) as performed in SRM is done in order to
construct an induction principle rather than to make a minimax statement. Finally, note
that the minimization is done with respect to a structure on the set of functions, while in
the minimax paradigm one takes the minimum directly over (all) functions.
(ii) Discuss the following folklore statement: “VC statisticians do not care about doing

the optimal thing, as long as they can guarantee how well they are doing. Bayesians do not
care how well they are doing, as long as they are doing the optimal thing.”

5.10 (Overfitting on the Test Set ���) Consider a learning algorithm which has a free
parameter C. Suppose you randomly pick n values C1� � � � �Cn, and for each n, you train
your algorithm. At the end, you pick the value for C which did best on the test set. How
would you expect your misjudgment of the true test error to scale with n?
How does the situation change if the Ci are not picked randomly, but by some adaptive

scheme which proposes new values of C by looking at how the previous ones did, and
guessing which change of C would likely improve the performance on the test set?

5.11 (Overfitting the Leave-One-Out Error ��) Explain how it is possible to overfit
the leave-one-out error. I.e., consider a learning algorithm that minimizes the leave-one-out
error, and argue that it is possible that this algorithm will overfit.

5.12 (Learning Theory for Differential Equations ÆÆÆ) Can you develop a statistical
theory of estimating differential equations from data? How can one suitably restrict the
“capacity” of differential equations?
Note that without restrictions, already ordinary differential equations may exhibit be-

havior where the capacity is infinite, as exemplified by Rubel’s universal differential equa-
tion [447]

3y�4y��y����2 � 4y�4y���2y���� � 6y�3y��2y���y���� � 24y�2y��4y����

�12y�3y��y���3 � 29y�2y��3y���2 � 12y��7 � 0�
(5.69)

Rubel proved that given any continuous function f : � � � and any positive continuous
function � : � � �

� , there exists a C� solution y of (5.69) such that �y(t)� f (t)� � �(t)
for all t � � . Therefore, all continuous functions are uniform limits of sequences of
solutions of (5.69). Moreover, y can be made to agree with f at a countable number of
distinct points (ti). Further references of interest to this problem include [61, 78, 63].


