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where the last equality follows from the fact that the Rademacher variables have
zero mean and are independent. Exploiting the fact that �yixi� � �xi� � R, we get
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Since this is true for the expectation over the random choice of the labels, there
must be at least one set of labels for which it also holds true. We have so far made
no restrictions on the labels, hence we may now use this specific set of labels. This
leads to the desired upper bound,�����
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Combining the upper bound with the lower bound (5.55), we get
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hence,

r � R2Λ2� (5.60)

In other words, if the r points are shattered by a canonical hyperplane satisfying
the assumptions we have made, then r is constrained by (5.60). The VC dimension
h also satisfies (5.60), since it corresponds to the maximum number of points that
can be shattered.

In the next section, we give an application of this theorem. Readers only interested
in the theoretical background of learning theory may want to skip this section.

5.6 A Model Selection Example

In the following example, taken from [470], we use a bound of the form (5.36)
to predict which kernel would perform best on a character recognition problem
(USPS set, see Section A.1). Since the problem is essentially separable, we disre-
gard the empirical risk term in the bound, and choose the parameters of a polyno-
mial kernel by minimizing the second term. Note that the second term is a mono-
tonic function of the capacity. As a capacity measure, we use the upper bound on
the VC dimension described in Theorem 5.5, which in turn is an upper bound on
the logarithm of the covering number that appears in (5.36) (by the arguments put
forward in Section 5.5.6).
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Figure 5.5 Average VC dimension (solid), and total number of test errors, of ten two-
class-classifiers (dotted) with polynomial degrees 2 through 7, trained on the USPS set of
handwritten digits. The baseline 174 on the error scale, corresponds to the total number
of test errors of the ten best binary classifiers, chosen from degrees 2 through 7. The graph
shows that for this problem, which can essentially be solved with zero training error for all
degrees greater than 1, the VC dimension allows us to predict that degree 4 yields the best
overall performance of the two-class-classifier on the test set (from [470, 467]).

We employ a version of Theorem 5.5, which uses the radius of the smallest
sphere containing the data in a feature space� associated with the kernel k [561].
The radius was computed by solving a quadratic program [470, 85] (cf. Section 8.3).Computing the

Enclosing Sphere
in�

We formulate the problem as follows:

minimize
R�0�x���

R2

subject to �xi � x��2 � R2�
(5.61)

where x� is the center of the sphere, and is found in the course of the optimization.
Employing the tools of constrained optimization, as briefly described in Chapter 1
(for details, see Chapter 6), we construct a Lagrangian,
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and compute the derivatives with respect to x� and R, to get

x� �
m

∑
i�1

�ixi� (5.63)

and the Wolfe dual problem:
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subject to
m
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�i � 1� �i � 0� (5.65)

where � is the vector of all Lagrange multipliers �i� i � 1� � � � �m.
As in the Support Vector algorithm, this problem has the property that the xi
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appear only in dot products, so we can again compute the dot products in feature
space, replacing

�
xi� x j

�
by k(xi� xj) (where the xi belong to the input domain �,

and the xi in the feature space�).
As Figure 5.5 shows, the VC dimension bound, using the radius R computed in

this way, gives a rather good prediction of the error on an independent test set.

5.7 Summary

In this chapter, we introduced the main ideas of statistical learning theory. For
learning processes utilizing empirical risk minimization to be successful, we need
a version of the law of large numbers that holds uniformly over all functions the
learning machine can implement. For this uniform law to hold true, the capacity
of the set of functions that the learning machine can implement has to be “well-
behaved.” We gave several capacity measures, such as the VC dimension, and
illustrated how to derive bounds on the test error of a learning machine, in terms
of the training error and the capacity. We have, moreover, shown how to bound
the capacity of margin classifiers, a result which will later be used to motivate the
Support Vector algorithm. Finally, we described an application in which a uniform
convergence bound was used for model selection.
Whilst this discussion of learning theory should be sufficient to understand

most of the present book, we will revisit learning theory at a later stage. In Chap-
ter 12, we will present some more advanced material, which applies to kernel
learning machines. Specifically, we will introduce another class of generalization
error bound, building on a concept of stability of algorithms minimizing regular-
ized risk functionals. These bounds are proven using concentration-of-measure in-
equalities, which are themselves generalizations of Chernoff and Hoeffding type
bounds. In addition, we will discuss leave-one-out and PAC-Bayesian bounds.

5.8 Problems

5.1 (No Free Lunch in Kernel Choice ��) Discuss the relationship between the “no-
free-lunch Theorem” and the statement that there is no free lunch in kernel choice.

5.2 (Error Counting Estimate [136] �) Suppose you are given a test set with n elements
to assess the accuracy of a trained classifier. Use the Chernoff bound to quantify the
probability that the mean error on the test set differs from the true risk by more than � � 0.
Argue that the test set should be as large as possible, in order to get a reliable estimate of
the performance of a classifier.

5.3 (The Tainted Die ��) A con-artist wants to taint a die such that it does not generate
any ’6’ when cast. Yet he does not know exactly how. So he devises the following scheme:


