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rest of the function class looks like. Having one function which gets picked as soon
as we have seen one data point would essentially void the inherently asymptotic
notion of consistency.

Theorem 5.3 (Vapnik & Chervonenkis (e.g., [562])) One-sided uniform convergence
in probability,

lim P{sup(R[f] — Remp[f]) > €} =0, (5.21)
m—oo " pog

for all € > 0, is a necessary and sufficient condition for nontrivial consistency of
empirical visk minimization.

As explained above, consistency, and thus learning, crucially depends on the set
of functions. In Section 5.1, we gave an example where we considered the set of all
possible functions, and showed that learning was impossible. The dependence of
learning on the set of functions has now returned in a different guise: the condition
of uniform convergence will crucially depend on the set of functions for which it
must hold.

The abstract characterization in Theorem 5.3 of consistency as a uniform con-
vergence property, whilst theoretically intriguing, is not all that useful in practice.
We do not want to check some fairly abstract convergence property every time
we want to use a learning machine. Therefore, we next address whether there are
properties of learning machines, i.e., of sets of functions, which ensure uniform
convergence of risks.

5.5 How to Derive a VC Bound

We now take a closer look at the subject of Theorem 5.3; the probability

P{sup(R[f] — Remplf]) > €}. (5.22)
fex
We give a simplified account, drawing from the expositions of [561, 562, 415, 238].
We do not aim to describe or even develop the theory to the extent that would
be necessary to give precise bounds for SVMs, say. Instead, our goal will be to
convey central insights rather than technical details. For more complete treatments
geared specifically towards SVMs, cf. [562, 491, 24]. We focus on the case of pattern
recognition; that is, on functions taking values in {+1}.
Two tricks are needed along the way: the union bound and the method of sym-
metrization by a ghost sample.

5.5.1 The Union Bound

Suppose the set F consists of two functions, f; and f,. In this case, uniform
convergence of risk trivially follows from the law of large numbers, which holds
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for each of the two. To see this, let

Ce:= {1, y1); -, (s Y [(RIfi] = Rempl i) > €} (5.23)

denote the set of samples for which the risks of f; differ by more than e. Then, by
definition, we have

P{sup(R[f] = Remp[f]) > €} = P(C; UC?). (5.24)
feF

The latter, however, can be rewritten as
P(C! UC?) =P(C}) + P(C?) — P(C! N C?) < P(CH) + P(C?), (5.25)

where the last inequality follows from the fact that P is nonnegative. Similarly, if

F={f1,..., fu}, we have

n
P{sup(R[f] = Remp[f]) > €} = P(C; U...UC]) < ¥ P(CY). (5.26)
feF =1
This inequality is called the union bound. As it is a crucial step in the derivation
of risk bounds, it is worthwhile to emphasize that it becomes an equality if and
only if all the events involved are disjoint. In practice, this is rarely the case, and
we therefore lose a lot when applying (5.26). It is a step with a large “slack.”
Nevertheless, when ¥ is finite, we may simply apply the law of large numbers
(5.11) for each individual P(C%), and the sum in (5.26) then leads to a constant factor
n on the right hand side of the bound — it does not change the exponentially
fast convergence of the empirical risk towards the actual risk. In the next section,
we describe an ingenious trick used by Vapnik and Chervonenkis, to reduce the
infinite case to the finite one. It consists of introducing what is sometimes called a
ghost sample.

5.5.2 Symmetrization

The central observation in this section is that we can bound (5.22) in terms of
a probability of an event referring to a finite function class. Note first that the
empirical risk term in (5.22) effectively refers only to a finite function class: for
any given training sample of m points x1,...,x,, the functions of & can take at
most 2" different values y1,...,y, (recall that the y; take values only in {£1}).
In addition, the probability that the empirical risk differs from the actual risk by
more than ¢, can be bounded by the twice the probability that it differs from the
empirical risk on a second sample of size m by more than €/2.

Lemma 5.4 (Symmetrization (Vapnik & Chervonenkis) (e.g. [5591)) For me? > 2,
we have

P{iup(R[f] — Remplf]) > €} < ZP{iup(Remp[f] — RemplfD) > €/2}. (5.27)
eJF €T

Here, the first P refers to the distribution of iid samples of size m, while the second one



136

Shattering
Coefficient

Shattering

Elements of Statistical Learning Theory

refers to iid samples of size 2m. In the latter case, Remp measures the loss on the first half
of the sample, and R.,,, on the second half.

emp

Although we do not prove this result, it should be fairly plausible: if the empirical
error rates on two independent m-samples are close to each other, then they should
also be close to the true error rate.

5.5.3 The Shattering Coefficient

The main result of Lemma 5.4 is that it implies, for the purpose of bounding (5.22),
that the function class ¥ is effectively finite: restricted to the 2m points appearing
on the right hand side of (5.27), it has at most 2*" elements. This is because only
the outputs of the functions on the patterns of the sample count, and there are
2m patterns with two possible outputs, £1. The number of effectively different
functions can be smaller than 22", however; and for our purposes, this is the case
that will turn out to be interesting.

Let Zyy == ((x1, 1), - - -, (X2, Yom)) be the given 2m-sample. Denote by N(, Z5,,)
the cardinality of F when restricted to {x1,...,x2,}, that is, the number of func-
tions from J that can be distinguished from their values on {x1,...,x2,}. Let us,
moreover, denote the maximum (over all possible choices of a 2m-sample) number
of functions that can be distinguished in this way as N(F,2m).

The function N(F, m) is referred to as the shattering coefficient, or in the more gen-
eral case of regression estimation, the covering number of 5.0 In the case of pattern
recognition, which is what we are currently looking at, N(&, m) has a particularly
simple interpretation: it is the number of different outputs (y1,...,y,) that the
functions in J can achieve on samples of a given size.” In other words, it simply
measures the number of ways that the function class can separate the patterns into two
classes. Whenever N(F,m) = 2", all possible separations can be implemented by
functions of the class. In this case, the function class is said to shatter m points.
Note that this means that there exists a set of m patterns which can be separated in
all possible ways — it does not mean that this applies to all sets of m patterns.

5.5.4 Uniform Convergence Bounds

Let us now take a closer look at the probability that for a 2m-sample Z,,, drawn
iid from P, we get a one-sided uniform deviation larger than €/2 (cf. (5.27)),

P{?(ug(Remp[ 1= RinolfD) > €/2}. (5.28)

6. In regression estimation, the covering number also depends on the accuracy within
which we are approximating the function class, and on the loss function used; see Sec-
tion 12.4 for more details.

7. Using the zero-one loss c(x,y, f(x)) = 1/2|f(x) — y| € {0,1}, it also equals the number of
different loss vectors (c(x1, y1, f(x1)), - - -, (X, Yoy f (X))
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The basic idea now is to pick a maximal set of functions {fi,..., fx(s,2,)} that
can be distinguished based on their values on Z,,,, then use the union bound, and
finally bound each term using the Chernoff inequality. However, the fact that the
f; depend on the sample Zj,, will make things somewhat more complicated. To
deal with this, we have to introduce an auxiliary step of randomization, using a
uniform distibution over permutations o of the 2m-sample Z5,,.

Let us denote the empirical risks on the two halves of the sample after the
permutation o by R{,,[f] and RZ,,[f] respectively. Since the 2m-sample is iid,
the permutation does not affect (5.28). We may thus instead consider

Pzzﬂ,,a{?P(RZmp[f] — REpLfD) > €/2}, (5.29)
€T

where the subscripts of P were added to clarify what the distribution refers to. We
next rewrite this as

[ Poppd sup (Replfl = R LFD) > €/2 Zan} dP(Z2n). (5.30)
(X x{£1}) FEF |z,
We can now express the event Ce := {o|sup. ), (R [f]— RE,[f]) > €/2} as
Zom
N(T,Zom)
Ce = U Ce(fn)a (531)
n=1

where the events C.(f,) := {a|(Rgmp[ fal — Rgnp[ fal) > €/2} refer to individual
functions f, chosen such that (U,{fu}) |z, = F|z,. Note that the functions f,
may be considered as fixed, since we have conditioned on Zy,,.

We are now in a position to appeal to the classical law of large numbers. Our
random experiment consists of drawing o from the uniform distribution over all
permutations of 2m-samples. This turns our sequence of losses £7 = 1| f(x?) — 7|
(i=1,...,2m) into an iid sequence of independent Bernoulli trials. We then apply
a modified Chernoff inequality to bound the probability of each event C.(f,). It

states that given a 2m-sample of Bernoulli trials, we have (see Problem 5.4)
1 & 1 2m WZEZ
PS— V¢ —— & >ep<2exp (——) (5.32)
{m 1:21 Com i:;+1 l } 2

For our present problem, we thus obtain

Py, (Ce(fn)) <2 exp <—m?€2> , (5.33)

independent of f,,. We next use the union bound to get a bound on the probability
of the event C, defined in (5.31). We obtain a sum over N(F, Z,,) identical terms
of the form (5.33). Hence (5.30) (and (5.29)) can be bounded from above by

me?
/ N, Zo) 2 exp | =" ) dP(Za,,)
(0 x{£1})2m 8
2

= 2E[N(T, Zay)] exp (—’%6) , (5.34)
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where the expectation is taken over the random drawing of Z,,,. The last step is to
combine this with Lemma 5.4, to obtain

P{?uP(R[f] — Remplf]) > €} <4E[N(TF, Zo)] exp (—"%2)
cF

=4 exp <lnE [N(TF, Zo,)] — %62) . (5.35)

We conclude that provided E[N(F, Z,,,)] does not grow exponentially in m (i.e.,
InE[N(F, Z,,,)] grows sublinearly), it is actually possible to make nontrivial state-
ments about the test error of learning machines.

The above reasoning is essentially the VC style analysis. Similar bounds can
be obtained using a strategy which is more common in the field of empirical
processes, first proving that sup ;(R[f] — Remp[f]) is concentrated around its mean
[554, 14].

5.5.5 Confidence Intervals

It is sometimes useful to rewrite (5.35) such that we specify the probability with
which we want the bound to hold, and then get the confidence interval, which
tells us how close the risk should be to the empirical risk. This can be achieved by
setting the right hand side of (5.35) equal to some § > 0, and then solving for €. As
a result, we get the statement that with a probability at least 1 — 4,

R[f] < Remp[f] + \/% (ll"lE [N(?a ZZm)] +1In %) . (536)
Note that this bound holds independent of f; in particular, it holds for the function
f™ minimizing the empirical risk. This is not only a strength, but also a weakness
in the bound. It is a strength since many learning machines do not truly minimize
the empirical risk, and the bound thus holds for them, too. It is a weakness since by
taking into account more information on which function we are interested in, one
could hope to get more accurate bounds. We will return to this issue in Section 12.1.

Bounds like (5.36) can be used to justify induction principles different from the
empirical risk minimization principle. Vapnik and Chervonenkis [569, 559] pro-
posed minimizing the right hand side of these bounds, rather than just the em-

pirical risk. The confidence term, in the present case, \/ 3 (INE[N(F, Zaw)] +1n %),
then ensures that the chosen function, denoted f,, not only leads to a small risk,
but also comes from a function class with small capacity.

The capacity term is a property of the function class ¥, and not of any individ-
ual function f. Thus, the bound cannot simply be minimized over choices of f.
Instead, we introduce a so-called structure on F, and minimize over the choice of
the structure. This leads to an induction principle called structural risk minimiza-
tion. We leave out the technicalities involved [559, 136, 562]. The main idea is
depicted in Figure 5.3.
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Figure 5.3 Graphical depiction of the structural risk minimization (SRM) induction prin-
ciple. The function class is decomposed into a nested sequence of subsets of increasing size
(and thus, of increasing capacity). The SRM principle picks a function f, which has small
training error, and comes from an element of the structure that has low capacity k, thus
minimizing a risk bound of type (5.36).

For practical purposes, we usually employ bounds of the type (5.36) as a guide-
line for coming up with risk functionals (see Section 4.1). Often, the risk functionals
form a compromise between quantities that should be minimized from a statistical
point of view, and quantities that can be minimized efficiently (cf. Problem 5.7).

There exists a large number of bounds similar to (5.35) and its alternative form
(5.36). Differences occur in the constants, both in front of the exponential and in
its exponent. The bounds also differ in the exponent of ¢ — in some cases, by a
factor greater than 2. For instance, if a training error of zero is achievable, we can
use Bernstein’s inequality instead of Chernoff’s result, which leads to e rather than
€2. For further details, cf. [136, 562, 492, 238]. Finally, the bounds differ in the way
they measure capacity. So far, we have used covering numbers, but this is not the
only method.

5.5.6 The VC Dimension and Other Capacity Concepts

So far, we have formulated the bounds in terms of the so-called annealed entropy
InE[N(F, Z,,,)]. This led to statements that depend on the distribution and thus
can take into account characteristics of the problem at hand. The downside is
that they are usually difficult to evaluate; moreover, in most problems, we do
not have knowledge of the underlying distribution. However, a number of dif-
ferent capacity concepts, with different properties, can take the role of the term
In(E [N(F, Z5,,))]) in (5.36).

= Given an example (x,y), f € F causes a loss that we denote by c(x,y, f(x)) :=
%| f(x) —y| € {0,1}. For alarger sample (x1, y1) . . ., (Xn, Y), the different functions
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f € F lead to a set of loss vectors §f = (c(x1, y1, f(x1), - - oy (X, Y, f(x))), whose
cardinality we denote by N (3" s, 1) e, (s ym)). The VC entropy is defined as

H?(m):E I:lnN(g:’v (xl,}/l),(xma]/m))] ) (537)

where the expectation is taken over the random generation of the m-sample

(x1,y1) -+, (X, Ym) from P.
One can show [562] that the convergence

lim Hy(m)/m =0, (5.38)
m—r00
is equivalent to uniform (two-sided) convergence of risk,

lim P{sup |R[f] — Remplf] > €} =0, (5.39)

for all € > 0. By Theorem 5.3, (5.39) thus implies consistency of empirical risk
minimization.

= If we exchange the expectation E and the logarithm in (5.37), we obtain the
annealed entropy used above,

HF™(m) = InE [N (F, (x1,y1) - - -, (¥, ym)) ] - (5.40)

Since the logarithm is a concave function, the annealed entropy is an upper bound
on the VC entropy. Therefore, whenever the annealed entropy satisfies a condition
of the form (5.38), the same automatically holds for the VC entropy.

One can show that the convergence

1i_r)n HF"(m)/m =0, (5.41)
implies exponentially fast convergence [561],

P{?up IR[f]— Remplf1| > €} <4 exp((HF"(2m)/m) — €%) - m). (5.42)
T

It has recently been proven that in fact (5.41) is not only sufficient, but also neces-
sary for this [66].

= We can obtain an upper bound on both entropies introduced so far, by taking a
supremum over all possible samples, instead of the expectation. This leads to the
growth function,

Gﬂ'(m) = InN (?7 (X1, ]/1) sy (xrm ym)) . (543)

max
(x1 ,yl),---w(Xm,ym)Ex X {il}

Note that by definition, the growth function is the logarithm of the shattering
coefficient, Gg(m) = InN(F, m).
The convergence

lim Gy(m)/m =0, (5.44)
m—»00

is necessary and sufficient for exponentially fast convergence of risk for all under-
lying distributions P.



5.5 How to Derive a VC Bound 141

VC Dimension

VC Dimension
for Real-Valued
Functions

VC Dimension
Example

= The next step will be to summarize the main behavior of the growth function
with a single number. If F is as rich as possible, so that for any sample of size m,
the points can be chosen such that by using functions of the learning machine, they
can be separated in all 2" possible ways (i.e., they can be shattered), then

Gg(m) = m-In(2). (5.45)

In this case, the convergence (5.44) does not take place, and learning will not
generally be successful. What about the other case? Vapnik and Chervonenkis
[567, 568] showed that either (5.45) holds true for all m, or there exists some
maximal m for which (5.45) is satisfied. This number is called the VC dimension
and is denoted by h. If the maximum does not exist, the VC dimension is said to
be infinite.

By construction, the VC dimension is thus the maximal number of points which
can be shattered by functions in J. It is possible to prove that for m > h [568],

Ga(m) < I (m% 1 1) . (5.46)

This means that up to m = h, the growth function increases linearly with the
sample size. Thereafter, it only increases logarithmically, i.e., much more slowly.
This is the regime where learning can succeed.

Although we do not make use of it in the present chapter, it is worthwhile to
also introduce the VC dimension of a class of real-valued functions { fw|w € A} at this
stage. It is defined to equal the VC dimension of the class of indicator functions

{sgn(fw —B)weABe (inffw(x), supfw(x)) } . (5.47)
* x
In summary, we get a succession of capacity concepts,

Hy(m) < H™(m) < Go(m) < h (In - +1) . (5.48)

From left to right, these become less precise. The entropies on the left are
distribution-dependent, but rather difficult to evaluate (see, e.g., [430, 391]). The
growth function and VC dimension are distribution-independent. This is less ac-
curate, and does not always capture the essence of a given problem, which might
have a much more benign distribution than the worst case; on the other hand, we
want the learning machine to work for all distributions. If we knew the distribu-
tion beforehand, then we would not need a learning machine anymore.

Let us look at a simple example of the VC dimension. As a function class, we
consider hyperplanes in R?, i.e.,

f(x) =sgn(a+b[x]; + c[x]2), with parametersa,b,c € R. (5.49)

Suppose we are given three points x1,x2,x3 which are not collinear. No matter
how they are labelled (that is, independent of our choice of y1, y2,y3 € {£1}), we
can always find parameters a,b, c € R such that f(x;) = y; for all i (see Figure 1.4 in
the introduction). In other words, there exist three points that we can shatter. This
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shows that the VC dimension of the set of hyperplanes in R? satisfies & > 3. On the
other hand, we can never shatter four points. It follows from simple geometry that
given any four points, there is always a set of labels such that we cannot realize the
corresponding classification. Therefore, the VC dimension is 1 = 3. More generally,
for hyperplanes in RY, the VC dimension can be shown to be h = N + 1. For a
formal derivation of this result, as well as of other examples, see [523].

How does this fit together with the fact that SVMs can be shown to correspond
to hyperplanes in feature spaces of possibly infinite dimension? The crucial point
is that SVMs correspond to large margin hyperplanes. Once the margin enters, the
capacity can be much smaller than the above general VC dimension of hyper-
planes. For simplicity, we consider the case of hyperplanes containing the origin.

Theorem 5.5 (Vapnik [559]) Consider hyperplanes (w,x) = 0, where w is normalized
such that they are in canonical form w.r.t. a set of points X* = {x1,...,%.}; i.e.,

.rrllin H(w,x;) | =1. (5.50)
i=1,...,

The set of decision functions fy(x) = sgn (x,w) defined on X*, and satisfying the con-
straint |w|| < A, has a VC dimension satisfying

h < R2A2. (5.51)
Here, R is the radius of the smallest sphere centered at the origin and containing X*.
Before we give a proof, several remarks are in order.

= The theorem states that we can control the VC dimension irrespective of the
dimension of the space by controlling the length of the weight vector ||w||. Note,
however, that this needs to be done a priori, by choosing a value for A. It therefore
does not strictly motivate what we will later see in SVMs, where ||w|| is minimized
in order to control the capacity. Detailed treatments can be found in the work of
Shawe-Taylor et al. [491, 24, 125].

= There exists a similar result for the case where R is the radius of the smallest
sphere (not necessarily centered at the origin) enclosing the data, and where we
allow for the possibility that the hyperplanes have a nonzero offset b [562]. In this
case, we give a simple visualization in figure Figure 5.4, which shows it is plausible
that enforcing a large margin amounts to reducing the VC dimension.

= Note that the theorem talks about functions defined on X*. To extend it to the
case where the functions are defined on all of the input domain X, it is best to state
it for the fat shattering dimension. For details, see [24].

The proof [24, 222, 559] is somewhat technical, and can be skipped if desired.

Proof Let us assume that x, . ..,x, are shattered by canonical hyperplanes with
|lw|| < A. Consequently, for all y,...,y, € {£1}, there exists a w with ||w| <A,
such that

yi(w,x;) >1 foralli=1,...,r (5.52)
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Figure 5.4 Simple visualization of the fact that enforcing a large margin of separation
amounts to limiting the VC dimension. Assume that the data points are contained in a ball
of radius R (cf. Theorem 5.5). Using hyperplanes with margin 4, it is possible to separate
three points in all possible ways. Using hyperplanes with the larger margin -, this is only
possible for two points, hence the VC dimension in that case is two rather than three.

—_—
Y2

The proof proceeds in two steps. In the first part, we prove that the more points we
want to shatter (5.52), the larger || 37_; y;x;|| must be. In the second part, we prove
that we can upper bound the size of || 3}_; y;x;|| in terms of R. Combining the two
gives the desired condition, which tells us the maximum number of points we can
shatter.

Summing (5.52) overi =1,...,r yields

<w, (i yixi> > > 7. (5.53)
=1

By the Cauchy-Schwarz inequality, on the other hand, we have

wo [ D yixi | ) <IIwll|| Y yixil| <A\ Y yixi (5.54)
< <121 ) > 121 121
Here, the second inequality follows from ||w| < A.

Combining (5.53) and (5.54), we get the desired lower bound,
r T
< X .
xS 1:21 Yix; (5.55)

We now move on to the second part. Let us consider independent random labels
yi € {£1} which are uniformly distributed, sometimes called Rademacher variables.
Let E denote the expectation over the choice of the labels. Exploiting the linearity
of E, we have

r 2 T r
2 yixi|| = E E( yixi, ) yiX;
1=1 1=1 =1

ok <yixi’ < ];ij]) i ini) >

E
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r

= 2 <<; E (yx;, }/jxj>> + E (yix;, yixi>>
1=1 JFL

= > Ellyxill, (5.56)
“

where the last equality follows from the fact that the Rademacher variables have
zero mean and are independent. Exploiting the fact that ||y,x;|| = ||x;|| < R, we get

r
E ViX;
=1

Since this is true for the expectation over the random choice of the labels, there
must be at least one set of labels for which it also holds true. We have so far made
no restrictions on the labels, hence we may now use this specific set of labels. This
leads to the desired upper bound,

2

E < rR%. (5.57)

2
< rR>. (5.58)

;
ViX;
“

1

Combining the upper bound with the lower bound (5.55), we get
2

,
<R (5.59)
hence,

r < R*A2. (5.60)

In other words, if the r points are shattered by a canonical hyperplane satisfying
the assumptions we have made, then r is constrained by (5.60). The VC dimension
h also satisfies (5.60), since it corresponds to the maximum number of points that
can be shattered. ]

In the next section, we give an application of this theorem. Readers only interested
in the theoretical background of learning theory may want to skip this section.

5.6 A Model Selection Example

In the following example, taken from [470], we use a bound of the form (5.36)
to predict which kernel would perform best on a character recognition problem
(USPS set, see Section A.1). Since the problem is essentially separable, we disre-
gard the empirical risk term in the bound, and choose the parameters of a polyno-
mial kernel by minimizing the second term. Note that the second term is a mono-
tonic function of the capacity. As a capacity measure, we use the upper bound on
the VC dimension described in Theorem 5.5, which in turn is an upper bound on
the logarithm of the covering number that appears in (5.36) (by the arguments put
forward in Section 5.5.6).



