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we would be very unlucky for this to occur precisely for the function f chosen by
empirical risk minimization.
At first sight, it seems that empirical risk minimization should work — in

contradiction to our lengthy explanation in the last section, arguing that we have
to do more than that. What is the catch?

5.3 When Does Learning Work: the Question of Consistency

It turns out that in the last section, we were too sloppy. When we find a function
f by choosing it to minimize the training error, we are no longer looking at
independent Bernoulli trials. We are actually choosing f such that the mean of
the �i is as small as possible. In this sense, we are actively looking for the worst
case, for a function which is very atypical, with respect to the average loss (i.e., the
empirical risk) that it will produce.
We should thus state more clearly what it is that we actually need for empirical

risk minimization to work. This is best expressed in terms of a notion that statisti-
cians call consistency. It amounts to saying that as the number of examples m tendsConsistency
to infinity, we want the function f m that minimizes Remp[ f ] (note that f m need not
be unique), to lead to a test error which converges to the lowest achievable value.
In other words, f m is asymptotically as good as whatever we could have done if
we were able to directly minimize R[ f ] (which we cannot, as we do not even know
it). In addition, consistency requires that asymptotically, the training and the test
error of f m be identical.3

It turns out that without restricting the set of admissible functions, empirical risk
minimization is not consistent. The main insight of VC (Vapnik-Chervonenkis)
theory is that actually, the worst case over all functions that the learning machine
can implement determines the consistency of empirical risk minimization. In other
words, we need a version of the law of large numbers which is uniform over all
functions that the learning machine can implement.

5.4 Uniform Convergence and Consistency

The present section will explain how consistency can be characterized by a uni-
form convergence condition on the set of functions � that the learning machine
can implement. Figure 5.2 gives a simplified depiction of the question of consis-
tency. Both the empirical risk and the actual risk are drawn as functions of f . For

3. We refrain from giving a more formal definition of consistency, the reason being that
there are some caveats to this classical definition of consistency; these would necessitate a
discussion leading us away from themain thread of the argument. For the precise definition
of the required notion of “nontrivial consistency,” see [561].
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Figure 5.2 Simplified depiction of the convergence of empirical risk to actual risk. The x-
axis gives a one-dimensional representation of the function class; the y axis denotes the risk
(error). For each fixed function f , the law of large numbers tells us that as the sample size
goes to infinity, the empirical risk Remp[ f ] converges towards the true risk R[ f ] (indicated
by the downward arrow). This does not imply, however, that in the limit of infinite sample
sizes, theminimizer of the empirical risk, f m, will lead to a value of the risk that is as good as
the best attainable risk, R[ f opt] (consistency). For the latter to be true, we require convergence
of Remp[ f ] towards R[ f ] to be uniform over all functions that the learning machines can
implement (see text).

simplicity, we have summarized all possible functions f by a single axis of the
plot. Empirical risk minimization consists in picking the f that yields the minimal
value of Remp. If it is consistent, then the minimum of Remp converges to that of R
in probability. Let us denote the minimizer of R by f opt, satisfying

R[ f ]� R[ f opt] � 0 (5.12)

for all f � �. This is the optimal choice that we could make, given complete
knowledge of the distribution P.4 Similarly, since f m minimizes the empirical risk,
we have

Remp[ f ]� Remp[ f m] � 0� (5.13)

for all f � �. Being true for all f � �, (5.12) and (5.13) hold in particular for f m and
f opt. If we substitute the former into (5.12) and the latter into (5.13), we obtain

R[ f m]� R[ f opt] � 0� (5.14)

and

Remp[ f opt]� Remp[ f m] � 0� (5.15)

4. As with f m, f opt need not be unique.
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The sum of these two inequalities satisfies

0 � R[ f m]� R[ f opt]� Remp[ f opt]� Remp[ f m]

� R[ f m]� Remp[ f m]� Remp[ f opt]� R[ f opt]

� sup
f��

�
R[ f ]� Remp[ f ]

�
� Remp[ f opt]� R[ f opt]� (5.16)

Let us first consider the second half of the right hand side. Due to the law of large
numbers, we have convergence in probability, i.e., for all � � 0,

�Remp[ f opt]� R[ f opt]�
P
� 0 as m��� (5.17)

This holds true since f opt is a fixed function, which is independent of the training
sample (see (5.11)).
The important conclusion is that if the empirical risk converges to the actual risk

one-sided uniformly, over all functions that the learning machine can implement,Uniform
Convergence of
Risk sup

f��
(R[ f ]� Remp[ f ])

P
� 0 as m��� (5.18)

then the left hand sides of (5.14) and (5.15) will likewise converge to 0;

R[ f m]� R[ f opt] P
� 0� (5.19)

Remp[ f opt]� Remp[ f m]
P
� 0� (5.20)

As argued above, (5.17) is not always true for f m, since f m is chosen to minimize
Remp, and thus depends on the sample. Assuming that (5.18) holds true, however,
then (5.19) and (5.20) imply that in the limit, R[ f m] cannot be larger than Remp[ f m].
One-sided uniform convergence on � is thus a sufficient condition for consistency
of the empirical risk minimization over �.5

What about the other way round? Is one-sided uniform convergence also a
necessary condition? Part of the mathematical beauty of VC theory lies in the
fact that this is the case. We cannot go into the necessary details to prove this
[571, 561, 562], and only state the main result. Note that this theorem uses the
notion of nontrivial consistency that we already mentioned briefly in footnote 3.
In a nutshell, this concept requires that the induction principle be consistent even
after the “best” functions have been removed. Nontrivial consistency thus rules
out, for instance, the case in which the problem is trivial, due to the existence of a
function which uniformly does better than all other functions. To understand this,
assume that there exists such a function. Since this function is uniformly better
than all others, we can already select this function (using ERM) from one (arbitrary)
data point. Hence the method would be trivially consistent, no matter what the

5. Note that the onesidedness of the convergence comes from the fact that we only require
consistency of empirical risk minimization. If we required the same for empirical risk maxi-
mization, then we would end up with standard uniform convergence, and the parentheses
in (5.18) would be replaced with modulus signs.
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rest of the function class looks like. Having one function which gets picked as soon
as we have seen one data point would essentially void the inherently asymptotic
notion of consistency.

Theorem 5.3 (Vapnik & Chervonenkis (e.g., [562])) One-sided uniform convergence
in probability,

lim
m��

P�sup
f��
(R[ f ]� Remp[ f ]) � �	 � 0� (5.21)

for all � � 0, is a necessary and sufficient condition for nontrivial consistency of
empirical risk minimization.

As explained above, consistency, and thus learning, crucially depends on the set
of functions. In Section 5.1, we gave an example where we considered the set of all
possible functions, and showed that learning was impossible. The dependence of
learning on the set of functions has now returned in a different guise: the condition
of uniform convergence will crucially depend on the set of functions for which it
must hold.
The abstract characterization in Theorem 5.3 of consistency as a uniform con-

vergence property, whilst theoretically intriguing, is not all that useful in practice.
We do not want to check some fairly abstract convergence property every time
we want to use a learning machine. Therefore, we next address whether there are
properties of learning machines, i.e., of sets of functions, which ensure uniform
convergence of risks.

5.5 How to Derive a VC Bound

We now take a closer look at the subject of Theorem 5.3; the probability

P�sup
f��
(R[ f ]� Remp[ f ]) � �	� (5.22)

We give a simplified account, drawing from the expositions of [561, 562, 415, 238].
We do not aim to describe or even develop the theory to the extent that would
be necessary to give precise bounds for SVMs, say. Instead, our goal will be to
convey central insights rather than technical details. Formore complete treatments
geared specifically towards SVMs, cf. [562, 491, 24]. We focus on the case of pattern
recognition; that is, on functions taking values in �
1	.
Two tricks are needed along the way: the union bound and the method of sym-

metrization by a ghost sample.

5.5.1 The Union Bound

Suppose the set � consists of two functions, f1 and f2. In this case, uniform
convergence of risk trivially follows from the law of large numbers, which holds


