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pattern recognition problem, we could set

(5.4)

Fx) = y; ifx=uxforsomei=1,...,m
1  otherwise.

This does not amount to any form of learning, however: suppose we are now given
a test point drawn from the same distribution, (x,y) ~ P(x, y). If X is a continuous
domain, and we are not in a degenerate situation, the new pattern x will almost
never be exactly equal to any of the training inputs x;. Therefore, the learning
machine will almost always predict that y = 1. If we allow all functions from X to'Y,
then the values of the function at points x1, . . ., Xy, carry no information about the values
at other points. In this situation, a learning machine cannot do better than chance.
This insight lies at the core of the so-called No-Free-Lunch Theorem popularized in
[608]; see also [254, 48].

The message is clear: if we make no restrictions on the class of functions from
which we choose our estimate f, we cannot hope to learn anything. Consequently,
machine learning research has studied various ways to implement such restric-
tions. In statistical learning theory, these restrictions are enforced by taking into
account the complexity or capacity (measured by VC dimension, covering numbers,
entropy numbers, or other concepts) of the class of functions that the learning ma-
chine can implement.!

In the Bayesian approach, a similar effect is achieved by placing prior distribu-
tions P(f) over the class of functions (Chapter 16). This may sound fundamentally
different, butitleads to algorithms which are closely related; and on the theoretical
side, recent progress has highlighted intriguing connections [92, 91, 353, 238].

5.2 The Law of Large Numbers

Let us step back and try to look at the problem from a slightly different angle.
Consider the case of pattern recognition using the misclassification loss function.
Given a fixed function f, then for each example, the loss &; := 1| f(x;) — v, is either

1. As an aside, note that the same problem applies to fraining on the test set (sometimes
called data snooping): sometimes, people optimize tuning parameters of a learning machine
by looking at how they change the results on an independent test set. Unfortunately, once
one has adjusted the parameter in this way, the test set is not independent anymore. This
is identical to the corresponding problem in training on the training set: once we have
chosen the function to minimize the training error, the latter no longer provides an unbiased
estimate of the test error. Overfitting occurs much faster on the training set, however, than
it does on the test set. This is usually due to the fact that the number of tuning parameters
of a learning machine is much smaller than the total number of parameters, and thus the
capacity tends to be smaller. For instance, an SVM for pattern recognition typically has two
tuning parameters, and optimizes m weight parameters (for a training set size of m). See
also Problem 5.3 and [461].
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Chernoff Bound

Hoeffding Bound

0 or 1 (provided we have a +1-valued function f), and all examples are drawn
independently. In the language of probability theory, we are faced with Bernoulli
trials. The &1, . .., &y are independently sampled from a random variable

£ e %\ F@—yl. (5.5)

A famous inequality due to Chernoff [107] characterizes how the empirical mean
Lsm, & converges to the expected value (or expectation) of ¢, denoted by E(€):

d

Note that the P refers to the probability of getting a sample &, ...,§&, with the
property |-L 37, & —E(¢)| > e. Mathematically speaking, P strictly refers to a so-
called product measure (cf. (B.11)). We will presently avoid further mathematical
detail; more information can be found in Appendix B.

In some instances, we will use a more general bound, due to Hoeffding (Theo-
rem 5.1). Presently, we formulate and prove a special case of the Hoeffding bound,
which implies (5.6). Note that in the following statement, the ¢; are no longer re-
stricted to take values in {0,1}.

1 m
Ei;& —E@)

> e} < 2exp(—2me?) (5.6)

Theorem 5.1 (Hoeffding [244]) Let &, i € [m] be m independent instances of a bounded
random variable &, with values in [a, b]. Denote their average by Q,, = L 3, &;. Then for
any € > 0,

P Qm - E(ﬁ) Z 2
{ o <exp (—(;71142)2) . (5.7)
P{E(&) — Qu > €}

The proof is carried out by using a technique commonly known as Chernoff’s
bounding method [107]. The proof technique is widely applicable, and generates
bounds such as Bernstein’s inequality [44] (exponential bounds based on the
variance of random variables), as well as concentration-of-measure inequalities
(see, e.g., [356, 66]). Readers not interested in the technical details underlying laws
of large numbers may want to skip the following discussion.

We start with an auxiliary inequality.

Lemma 5.2 (Markov’s Inequality (e.g., [136])) Denote by & a nonnegative random
variable with distribution P. Then for all A > 0, the following inequality holds:

1
P{{ > AE(§)} < e (5.8)
Proof Using the definition of E(§), we have

E(¢) = /0 ¢dP(¢) > /A o CAPO) > XE©) /A o PO = ABQP(E > XE©).
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Proof of Theorem 5.1.  Without loss of generality, we assume that E(§) = 0 (other-
wise simply define a random variable £ := ¢ — E(¢) and use the latter in the proof).
Chernoff’s bounding method consists in transforming a random variable ¢ into
exp(s§) (s > 0), and applying Markov’s inequality to it. Depending on &, we can
obtain different bounds. In our case, we use

P{¢ > e} = P{exp(s§) > exp(se)} < e *E [exp(sf)] (5.9)

=e¢ *E [exp <% i{,)] < eseﬁE {exp (%{J] . (5.10)
=1 =

In (5.10), we exploited the fact that for positive random variables E[[]; ;] <
[T;E[&]. Since the inequality holds independent of the choice of s, we may mini-
mize over s to obtain a bound that is as tight as possible. To this end, we transform

the expectation over exp (£¢;) into something more amenable. The derivation is
s2(b—a)? )

8m?
From this, we conclude that the optimal value of s is given by s = (bﬂiﬂ‘)z. Substitut-
ing this value into the right hand side of (5.10) proves the bound. [

rather technical; thus we state without proof [244]: E [exp(%fi)] < exp (

Let us now return to (5.6). Substituting (5.5) into (5.6), we have a bound which
states how likely it is that for a given function f, the empirical risk is close to the
actual risk,

P{|Remplf] — RIf]| > €} < 2exp(—2me?). (5.11)

Using Hoeffding’s inequality, a similar bound can be given for the case of regres-
sion estimation, provided the loss c(x, y, f(x)) is bounded.

For any fixed function, the training error thus provides an unbiased estimate
of the test error. Moreover, the convergence (in probability) Remp[f] — R[f] as
m — oo is exponentially fast in the number of training examples.? Although this
sounds just about as good as we could possibly have hoped, there is one caveat:
a crucial property of both the Chernoff and the Hoeffding bound is that they are
probabilistic in nature. They state that the probability of a large deviation between
test error and training error of f is small; the larger the sample size m, the smaller
the probability. Granted, they do not rule out the presence of cases where the
deviation is large, and our learning machine will have many functions that it can
implement. Could there be a function for which things go wrong? It appears that

2. Convergence in probability, denoted as
[Remplf1 = RIf L 0asm — oo,
means that for all € > 0, we have

Tim P{|Ramplf1 = RIf]| > €} =0.
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we would be very unlucky for this to occur precisely for the function f chosen by
empirical risk minimization.

At first sight, it seems that empirical risk minimization should work — in
contradiction to our lengthy explanation in the last section, arguing that we have
to do more than that. What is the catch?

5.3 When Does Learning Work: the Question of Consistency

Consistency

It turns out that in the last section, we were too sloppy. When we find a function
f by choosing it to minimize the training error, we are no longer looking at
independent Bernoulli trials. We are actually choosing f such that the mean of
the &; is as small as possible. In this sense, we are actively looking for the worst
case, for a function which is very atypical, with respect to the average loss (i.e., the
empirical risk) that it will produce.

We should thus state more clearly what it is that we actually need for empirical
risk minimization to work. This is best expressed in terms of a notion that statisti-
cians call consistency. It amounts to saying that as the number of examples m tends
to infinity, we want the function f” that minimizes Remp[f] (note that /" need not
be unique), to lead to a test error which converges to the lowest achievable value.
In other words, f™ is asymptotically as good as whatever we could have done if
we were able to directly minimize R[f] (which we cannot, as we do not even know
it). In addition, consistency requires that asymptotically, the training and the test
error of f" be identical.3

It turns out that without restricting the set of admissible functions, empirical risk
minimization is not consistent. The main insight of VC (Vapnik-Chervonenkis)
theory is that actually, the worst case over all functions that the learning machine
can implement determines the consistency of empirical risk minimization. In other
words, we need a version of the law of large numbers which is uniform over all
functions that the learning machine can implement.

5.4 Uniform Convergence and Consistency

The present section will explain how consistency can be characterized by a uni-
form convergence condition on the set of functions F that the learning machine
can implement. Figure 5.2 gives a simplified depiction of the question of consis-
tency. Both the empirical risk and the actual risk are drawn as functions of f. For

3. We refrain from giving a more formal definition of consistency, the reason being that
there are some caveats to this classical definition of consistency; these would necessitate a
discussion leading us away from the main thread of the argument. For the precise definition
of the required notion of “nontrivial consistency,” see [561].



