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Elements of Statistical Learning Theory

We now give a more complete exposition of the ideas of statistical learning theory,
which we briefly touched on in Chapter 1. We mentioned previously that in order
to learn from a small training set, we should try to explain the data with a model of
small capacity; we have not yet justified why this is the case, however. This is the
main goal of the present chapter.

We start by revisiting the difference between risk minimization and empirical
risk minimization, and illustrating some common pitfalls in machine learning,
such as overfitting and training on the test set (Section 5.1). We explain that the
motivation for empirical risk minimization is the law of large numbers, but that
the classical version of this law is not sufficient for our purposes (Section 5.2).
Thus, we need to introduce the statistical notion of consistency (Section 5.3). It turns
out that consistency of learning algorithms amounts to a law of large numbers,
which holds uniformly over all functions that the learning machine can implement
(Section 5.4). This crucial insight, due to Vapnik and Chervonenkis, focuses our
attention on the set of attainable functions; this set must be restricted in order to
have any hope of succeeding. Section 5.5 states probabilistic bounds on the risk
of learning machines, and summarizes different ways of characterizing precisely
how the set of functions can be restricted. This leads to the notion of capacity
concepts, which gives us the main ingredients of the typical generalization error
bound of statistical learning theory. We do not indulge in a complete treatment;
rather, we try to give the main insights to provide the reader with some intuition
as to how the different pieces of the puzzle fit together. We end with a section
showing an example application of risk bounds for model selection (Section 5.6).

The chapter attempts to present the material in a fairly non-technical manner,
providing intuition wherever possible. Given the nature of the subject matter,
however, a limited amount of mathematical background is required. The reader
who is not familiar with basic probability theory should first read Section B.1.

5.1 Introduction

Let us start with an example. We consider a regression estimation problem. Sup-
pose we are given empirical observations,

(1, 1), o, X, ym) € X XY, (5.1)
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where for simplicity we take XX = Y = R. Figure 5.1 shows a plot of such a dataset,
along with two possible functional dependencies that could underlie the data. The
dashed line represents a fairly complex model, and fits the training data perfectly.
The straight line, on the other hand, does not completely “explain” the data, in
the sense that there are some residual errors; it is much “simpler,” however. A
physicist measuring these data points would argue that it cannot be by chance
that the measurements almost lie on a straight line, and would much prefer to
attribute the residuals to measurement error than to an erroneous model. But is it
possible to characterize the way in which the straight line is simpler, and why this
should imply that it is, in some sense, closer to an underlying true dependency?
In one form or another, this issue has long occupied the minds of researchers
studying the problem of learning. In classical statistics, it has been studied as the
bias-variance dilemma. If we computed a linear fit for every data set that we ever
encountered, then every functional dependency we would ever “discover” would
be linear. But this would not come from the data; it would be a bias imposed by
us. If, on the other hand, we fitted a polynomial of sufficiently high degree to any
given data set, we would always be able to fit the data perfectly, but the exact
model we came up with would be subject to large fluctuations, depending on

Figure 5.1 Suppose we want to estimate a
functional dependence from a set of examples
(black dots). Which model is preferable? The
complex model perfectly fits all data points,
whereas the straight line exhibits residual er-
rors. Statistical learning theory formalizes the
role of the complexity of the model class, and
gives probabilistic guarantees for the validity
of the inferred model.
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how accurate our measurements were in the first place — the model would suffer
from a large variance. A related dichotomy is the one between estimation error and
approximation error. If we use a small class of functions, then even the best possible
solution will poorly approximate the “true” dependency, while a large class of
functions will lead to a large statistical estimation error.

In the terminology of applied machine learning and the design of neural net-
works, the complex explanation shows overfitting, while an overly simple expla-
nation imposed by the learning machine design would lead to underfitting. A great
deal of research has gone into clever engineering tricks and heuristics; these are
used, for instance, to aid in the design of neural networks which will not overfit
on a given data set [397]. In neural networks, overfitting can be avoided in a num-
ber of ways, such as by choosing a number of hidden units that is not too large, by
stopping the training procedure early in order not to enforce a perfect explanation
of the training set, or by using weight decay to limit the size of the weights, and
thus of the function class implemented by the network.

Statistical learning theory provides a solid mathematical framework for study-
ing these questions in depth. As mentioned in Chapters 1 and 3, it makes the as-
sumption that the data are generated by sampling from an unknown underlying
distribution P(x, y). The learning problem then consists in minimizing the risk (or
expected loss on the test data, see Definition 3.3),

RUijde%ﬂwwﬂmw. (52)

Here, ¢ is a loss function. In the case of pattern recognition, where Y = {+1}, a
common choice is the misclassification error, c(x, y, f(x)) = %\ f(x)—y).

The difficulty of the task stems from the fact that we are trying to minimize a
quantity that we cannot actually evaluate: since we do not know P, we cannot
compute the integral (5.2). What we do know, however, are the training data (5.1),
which are sampled from P. We can thus try to infer a function f from the training
sample that is, in some sense, close to the one minimizing (5.2). To this end, we
need what is called an induction principle.

One way to proceed is to use the training sample to approximate the integral in
(5.2) by a finite sum (see (B.18)). This leads to the empirical risk (Definition 3.4),

Renplf1 = = iy f2), 653)
=

and the empirical risk minimization (ERM) induction principle, which recommends
that we choose an f that minimizes (5.3).

Cast in these terms, the fundamental trade-off in learning can be stated as
follows: if we allow f to be taken from a very large class of functions J, we can
always find an f that leads to a rather small value of (5.3). For instance, if we allow
the use of all functions f mapping X — Y (in compact notation, F = Y*), then we
can minimize (5.3) yet still be distant from the minimizer of (5.2). Considering a
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pattern recognition problem, we could set

(5.4)

Fx) = y; ifx=uxforsomei=1,...,m
1  otherwise.

This does not amount to any form of learning, however: suppose we are now given
a test point drawn from the same distribution, (x,y) ~ P(x, y). If X is a continuous
domain, and we are not in a degenerate situation, the new pattern x will almost
never be exactly equal to any of the training inputs x;. Therefore, the learning
machine will almost always predict that y = 1. If we allow all functions from X to'Y,
then the values of the function at points x1, . . ., Xy, carry no information about the values
at other points. In this situation, a learning machine cannot do better than chance.
This insight lies at the core of the so-called No-Free-Lunch Theorem popularized in
[608]; see also [254, 48].

The message is clear: if we make no restrictions on the class of functions from
which we choose our estimate f, we cannot hope to learn anything. Consequently,
machine learning research has studied various ways to implement such restric-
tions. In statistical learning theory, these restrictions are enforced by taking into
account the complexity or capacity (measured by VC dimension, covering numbers,
entropy numbers, or other concepts) of the class of functions that the learning ma-
chine can implement.!

In the Bayesian approach, a similar effect is achieved by placing prior distribu-
tions P(f) over the class of functions (Chapter 16). This may sound fundamentally
different, butitleads to algorithms which are closely related; and on the theoretical
side, recent progress has highlighted intriguing connections [92, 91, 353, 238].

5.2 The Law of Large Numbers

Let us step back and try to look at the problem from a slightly different angle.
Consider the case of pattern recognition using the misclassification loss function.
Given a fixed function f, then for each example, the loss &; := 1| f(x;) — v, is either

1. As an aside, note that the same problem applies to fraining on the test set (sometimes
called data snooping): sometimes, people optimize tuning parameters of a learning machine
by looking at how they change the results on an independent test set. Unfortunately, once
one has adjusted the parameter in this way, the test set is not independent anymore. This
is identical to the corresponding problem in training on the training set: once we have
chosen the function to minimize the training error, the latter no longer provides an unbiased
estimate of the test error. Overfitting occurs much faster on the training set, however, than
it does on the test set. This is usually due to the fact that the number of tuning parameters
of a learning machine is much smaller than the total number of parameters, and thus the
capacity tends to be smaller. For instance, an SVM for pattern recognition typically has two
tuning parameters, and optimizes m weight parameters (for a training set size of m). See
also Problem 5.3 and [461].



