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that in a Maximum Likelihood setting this concept is rather similar to the notions
of risk and loss, with c(x� y� f (x))�� ln p(y�x� f (x)) as the link between both quan-
tities.
This point of view allowed us to analyze the properties of estimators in more

detail and provide lower bounds on the performance of unbiased estimators, i.e.
the Cramér-Rao theorem. The latter was then used as a benchmarking tool for
various loss functions and density models, such as the �-insensitive loss. The
consequence of this analysis is a corroboration of experimental findings that there
exists a linear correlation between the amount of noise in the observations and the
optimal width of �.
This, in turn, allowed us to construct adaptive loss functions which adjust

themselves to the amount of noise, much like trimmed mean estimators. These
formulations can be used directly in mathematical programs, leading to �-SV
algorithms in subsequent chapters. The question of which choices are optimal in a
finite sample size setting remains an open research problem.

3.6 Problems

3.1 (Soft Margin and Logistic Regression �) The soft margin loss function csoft and
the logistic loss clogist are asymptotically almost the same; show that

lim
f��

�
csoft(x� 1� f )� clogist(x� 1� f )

�
� 1 (3.64)

lim
f���

�
csoft(x� 1� f )� clogist(x� 1� f )

�
� 0� (3.65)

3.2 (Multi-class Discrimination ��) Assume you have to solve a classification problem
with M different classes. Discuss how the number of functions used to solve this task
affects the quality of the solution.

How would the loss function look if you were to use only one real-valued function
f : �� � . Which symmetries are violated in this case (hint: what happens if you permute
the classes)?

Howmany functions do you need if each of themmakes a binary decision f :���0� 1�?

How many functions do you need in order to make the solution permutation symmetric
with respect to the class labels?

How should you assess the classification error? Is it a good idea to use the misclassifica-
tion rate of one individual function as a performance criterion (hint: correlation of errors)?
By how much can this error differ from the total misclassification error?

3.3 (Mean and Median �) Assume 8 people want to gather for a meeting; 5 of them live
in Stuttgart and 3 in Munich. Where should they meet if (a) they want the total distance
traveled by all people to be minimal, (b) they want the average distance traveled per person
to be minimal, or (c) they want the average squared distance to be minimal? What happens
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to the meeting points if one of the 3 people moves from Munich to Sydney?

3.4 (Locally Adaptive Loss Functions ���) Assume that the loss function c(x� y� f (x))
varies with x. What does this mean for the expected loss? Can you give a bound on the
latter even if you know p(y�x) and f at every point but know c only on a finite sample
(hint: construct a counterexample)? How will things change if c cannot vary much with
x?

3.5 (Transduction Error ���) Assume that we want to minimize the test error of mis-
classification Rtest[ f ], given a training sample �(x1� y1)� � � � � (xm� ym)�, a test sample
�x�1� � � � � x

�

m�� and a loss function c(x� y� f (x)).
Show that any loss function c�(x�� f (x�)) on the test sample has to be symmetric in f ,

i.e. c�(x�� f (x�)) � c�(x��� f (x�)). Prove that no non-constant convex function can satisfy
this property. What does this mean for the practical solution of optimization problem? See
[267, 37, 211, 103] for details.

3.6 (Convexity and Uniqueness ��) Show that the problem of estimating a location
parameter (a single scalar) has an interval [a� b] � � of equivalent global minima if the
loss functions are convex. For non-convex loss functions construct an example where this
is not the case.

3.7 (Linearly Dependent Parameters ��) Show that in a linear model f � ∑i �i fi on
� it is impossible to find a unique set of optimal parameters �i if the functions fi are not
linearly independent. Does this have any effect on f itself?

3.8 (Ill-posed Problems ���) Assume you want to solve the problem Ax � y where A
is a symmetric positive definite matrix, i.e., a matrix with nonnegative eigenvalues. If you
change y to y�, how much will the solution x� of Ax� � y� differ from x�. Give lower and
upper bounds on this quantity. Hint: decompose y into the eigensystem of A.

3.9 (Fisher Map [258] ��) Show that the map

U�(x) :� I�
1
2 �� ln p(x��) (3.66)

maps x into vectors with zero mean and unit variance. Chapter 13 will use this map to
design kernels.

3.10 (Cramér-Rao Inequality for Multivariate Estimators ��) Prove equation (3.31).
Hint: start by applying the Cauchy-Schwarz inequality to
�
det E�̄[(�̂(�)� E�̄ �̂(�))(T�(�)� E�̄T�(�))

�]
�

(3.67)

to obtain I and B and compute the expected value coefficient-wise.

3.11 (Soft Margin Loss and Conditional Probabilities [521] ���) What is the con-
ditional probability p(y�x) corresponding to the soft margin loss function c(x� y� f (x)) �
max(0� 1� y f (x))?
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How can you fix the problem that the probabilities p(�1�x) and p(1�x) have to sum up
to 1?

How does the introduction of a third class (“don’t know”) change the problem? What is
the problem with this approach? Hint: What is the behavior for large � f (x)�?

3.12 (Label Noise ��) Denote by P(y � 1� f (x)) and P(y � �1� f (x)) the conditional
probabilities of labels �1 for a classifier output f (x). How will P change if we randomly
flip labels with � 	 (0� 1) probability? How should you adapt your density model?

3.13 (Unbiased Estimators ��) Prove that the least mean square estimator is unbiased
for arbitrary symmetric distributions. Can you extend the result to arbitrary symmetric
losses?

3.14 (Efficiency of Huber’s Robust Estimator ��) Compute the efficiency of Huber’s
Robust Estimator in the presence of pure Gaussian noise with unit variance.

3.15 (Influence and Robustness ���) Prove that for robust estimators using (3.48) as
their density model, the maximum change in the minimizer of the empirical risk is bounded
by Æk

m if a sample �i is changed to �i � Æ. What happens in the case of Gaussian density
models (i.e., squared loss)?

3.16 (Robustness of Gaussian Distributions [559] ���) Prove that the normal distri-
bution with variance 	2 is robust among the class of distributions with bounded variance
(by 	2). Hint: show that we have a saddle point analogous to Theorem 3.15 by exploiting
Theorems 3.13 and Theorem 3.14.

3.17 (TrimmedMean ��) Show that under the assumption of an unknown distribution
contributing at most �, Huber’s robust loss function for normal distributions leads to a
trimmed mean estimator which discards � of the data.

3.18 (Optimal � for Gaussian Noise �) Give an explicit solution for the optimal � in
the case of additive Gaussian noise.

3.19 (Optimal � for Discrete Distribution ��) Assume that we have a noise model
with a discrete distribution of �, where P(� � 
) � P(� � �
) � p1, P(� � 2
) � P(� �
�2
) � p2, 2(p1� p2) � 1, and p1� p2 
 0. Compute the optimal value of � .


