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The current section concludes with the proof that the maximum likelihood
estimator meets the Cramér-Rao bound.

Theorem 3.14 (Efficiency of Maximum Likelihood [118, 218, 43]) The maximum
likelihood estimator (cf. (3.18) and (3.19)) given by

�̂(Y) :� argmax
�

ln p(Y��)� argmin
�

�[�] (3.43)

is asymptotically efficient (e � 1).

To keep things simple we will prove (3.43) only for the class of twice differentiable
continuous densities by applying Theorem 3.13. For a more general proof see
[118, 218, 43].

Proof By construction, G is equal to the Fisher information matrix, if we choose
d according to (3.43). Hence a sufficient condition is that Q � �I, which is what
we show below. To this end we expand the integrand of (3.42),

�2�d(Y� �)� �2� ln p(Y��)�
�2� p(Y��)
p(Y��) �

�
��p(Y��)
p(Y��)

�2
�

�2� p(Y��)
p(Y��) �V2� (Y)� (3.44)

The expectation of the second term in (3.44) equals �I. We now show that the
expectation of the first term vanishes;
�
p(Y��)�

2
� p(Y��)
p(Y��) dY � �2�

�
p(Y��)dY � �2�1 � 0� (3.45)

Hence Q��I and thus e� Q2�(IG)� 1. This proves that themaximum likelihood
estimator is asymptotically efficient.

It appears as if the best thing we could do is to use the maximum likelihood (ML)
estimator. Unfortunately, reality is not quite as simple as that. First, the above
statement holds only asymptotically. This leads to the (justified) suspicion that
for finite sample sizes we may be able to do better than ML estimation. Second,
practical considerations such as the additional goal of sparse decomposition may
lead to the choice of a non-optimal loss function.
Finally, we may not know the true density model, which is required for the

definition of the maximum likelihood estimator. We can try to make an educated
guess; bad guesses of the class of densities, however, can lead to large errors in the
estimation (see, e.g., [251]). This prompted the development of robust estimators.

3.4 Robust Estimators

So far, in order to make any practical predictions, we had to assume a certain
class of distributions from which P(Y) was chosen. Likewise, in the case of risk
functionals, we also assumed that training and test data are identically distributed.
This section provides tools to safeguard ourselves against cases where the above
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assumptions are not satisfied.
More specifically, we would like to avoid a certain fraction � of ‘bad’ obser-Outliers

vations (often also referred to as ‘outliers’) seriously affecting the quality of the
estimate. This implies that the influence of individual patterns should be bounded
from above. Huber [250] gives a detailed list of desirable properties of a robust
estimator. We refrain from reproducing this list at present, or committing to a par-
ticular definition of robustness.
As usual for the estimation of location parameter context (i.e. estimation of the

expected value of a random variable) we assume a specific parametric form of
p(Y��), namely

p(Y��)�
m

∏
i�1
p(yi��) �

m

∏
i�1
p(yi � �)� (3.46)

Unless stated otherwise, this is the formulation we will use throughout this sec-
tion.

3.4.1 Robustness via Loss Functions

Huber’s idea [250] in constructing a robust estimator was to take a loss function as
provided by the maximum likelihood framework, and modify it in such a way
as to limit the influence of each individual pattern. This is done by providing
an upper bound on the slope of � ln p(Y��). We shall see that methods such
as the trimmed mean or the median are special cases thereof. The �-insensitive
loss function can also be viewed as a trimmed estimator. This will lead to the
development of adaptive loss functions in the subsequent sections. We begin with
the main theorem of this section.

Theorem 3.15 (Robust Loss Functions (Huber [250])) Let � be a class of densities
formed byMixture

Densities
� :� �p�p � (1� �)p0� �p1� where � � (0� 1) and p0 are known� (3.47)

Moreover assume that both p0 and p1 are symmetric with respect to the origin, their
logarithms are twice continuously differentiable, ln p0 is convex and known, and p1 is
unknown. Then the density

p̄(�) :� (1� �)

�
p0(�) if ��� � �0

p0(�0)e�k(�����0) otherwise
(3.48)

is robust in the sense that the maximum likelihood estimator corresponding to (3.48) has
minimum variance with respect to the “worst” possible density pworst � (1� �)p0� �p1:
it is a saddle point (located at pworst) in terms of variance with respect to the true density
p � � and the density p̄ � � used in estimating the location parameter. This means that
no density p has larger variance than pworst and that for p � pworst no estimator is better
than the one where p̄ � pworst, as used in the robust estimator.
The constants k � 0 and �0 are obtained by the normalization condition, that p̄ be a
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proper density and that the first derivative in ln p̄ be continuous.

Proof To show that p̄ is a saddle point in � we have to prove that (a) no estima-
tion procedure other than the one using ln p̄ as the loss function has lower variance
for the density p̄, and that (b) no density has higher variance than p̄ if ln p̄ is used
as loss function. Part (a) follows immediately from the Cramér-Rao theorem (Th.
3.11); part (b) can be proved as follows.
We use Theorem 3.13, and a proof technique pointed out in [559], to compute

the variance of an estimator using ln p̄ as loss function;

B �
� �

�� ln p̄(y��)
�2 �(1� �)p0(y��)� �p�(y��)�dy�

�2
�
ln p̄(y��)�(1� �)p0(y��)� �p�(y��)�dy � (3.49)

Here p� is an arbitrary density which we will choose such that B is maximized. By
construction,

�
�� ln p̄(y��)

�2
�

� �
�� ln p0(y��)

�2 � k2 if �y� �� � �0�

k2 otherwise,
(3.50)

�2� ln p̄(y��) �
�

�2� ln p0(y��) � 0 if �y� �� � �0�

0 otherwise.
(3.51)

Thus any density p� which is 0 in [��0� �0] will minimize the denominator (the
term depending on p� will be 0, which is the lowest obtainable value due to (3.51)),
and maximize the numerator, since in the latter the contribution of p � is always
limited to k2�. Now ��1

�
p̄� (1� �)p0

�
is exactly such a density. Hence the saddle

point property holds.

Remark 3.16 (Robustness Classes) If we have more knowledge about the class of den-
sities �, a different loss function will have the saddle point property. For instance, using
a similar argument as above, one can show that the normal distribution is robust in the
class of all distributions with bounded variance. This implies that among all possible dis-
tributions with bounded variance, the estimator of the mean of a normal distribution has
the highest variance.
Likewise, the Laplacian distribution is robust in the class of all symmetric distributions

with density p(0) � c for some fixed c � 0 (see [559, 251] for more details).
Hence, even though a loss function defined according to Theorem 3.15 is generally
desirable, we may be less cautious, and use a different loss function for improved
performance, when we have additional knowledge of the distribution.

Remark 3.17 (Mean and Median) Assume we are dealing with a mixture of a normal
distribution with variance 	2 and an additional unknown distribution with weight at most
�. It is easy to check that the application of Theorem 3.15 to normal distributions yields
Huber’s robust loss function from Table 3.1.
The maximizer of the likelihood (see also Problem 3.17) is a trimmed mean estimator

which discards � of the data: effectively all �i deviating from the mean by more than 	 are
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ignored and the mean is computed from the remaining data. Hence Theorem 3.15 gives a
formal justification for this popular type of estimator.
If we let �� 1 we recover the median estimator which stems from a Laplacian distribu-

tion. Here, all patterns but the median one are discarded.

Besides the classical examples of loss functions and density models, we might also
consider a slightly unconventional estimation procedure: use the average between
the k-smallest and the k-largest of all observations � observations as the estimatedTrimmed Interval

Estimator mean of the underlying distribution (for sorted observations �i with �i � � j for
1 � i � j � m the estimator computes (�k � �m�k�1)�2). This procedure makes
sense, for instance, when we are trying to infer the mean of a random variable
generated by roundoff noise (i.e., noise whose density is constant within some
bounded interval) plus an additional unknown amount of noise.
Note that both the patterns strictly inside or outside an interval of size [��� �]

around the estimate have no direct influence on the outcome. Only patterns on the
boundary matter. This is a very similar situation to the behavior of Support Vector
Machines in regression, and one can show that it corresponds to the minimizerSupport Patterns
of the �-insensitive loss function (3.9). We will study the properties of the latter in
more detail in the following section and thereafter show how it can be transformed
into an adaptive risk functional.

3.4.2 Efficiency and the �-Insensitive Loss Function

The tools of Section 3.3.2 allow us to analyze the �-insensitive loss function inmore
detail. Even though the asymptotic estimation of a location parameter setting is a
gross oversimplification of what is happening in a SV regression estimator (where
we estimate a nonparametric function, and moreover have only a limited number
of observations at our disposition), it will provide us with useful insights into this
more complex case [510, 481].
In a first step, we compute the efficiency of an estimator, for several noisemodels

and amounts of variance, using a density corresponding to the �-insensitive loss
function (cf. Table 3.1);

p�(y��)� 1
2� 2�

exp(��y� ���)� 1
2� 2�

�
1 if �y� �� � ��

exp(�� �y� ��) otherwise.
(3.52)

For this purpose we have to evaluate the quantities G (3.41) and Q (3.42) of
Theorem 3.13. We obtain

G � m
� �

�� ln p(y��)
�2 dP(y��)� m�1� � �

��
p(y��)dy

�
� (3.53)

Q � m
�

�2� ln p(y��)dP(y��)� m
�
p(��� ���)� p(�� ���)� � (3.54)

The Fisher information I of m iid random variables distributed according to p� is
m-times the value of a single random variable. Thus all dependencies on m in e
cancel out and we can limit ourselves to the case of m � 1 for the analysis of the
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efficiency of estimators.
Now we may check what happens if we use the �-insensitive loss function for

different types of noise model. For the sake of simplicity we begin with Gaussian
noise.

Example 3.18 (Gaussian Noise) Assume that y is normally distributed with zero mean
(i.e. � � 0) and variance 	. By construction, the minimum obtainable variance is I�1 � 	2

(recall that m � 1). Moreover (3.53) and (3.54) yield

G
Q2
� 	2 exp

�
�2

	2

��
1� erf �	

2	

�
� (3.55)

The efficiency e � Q2

GI is maximized for � � 0�6120	. This means that if the underlying
noise model is Gaussian with variance 	 and we have to use an �-insensitive loss function
to estimate a location parameter, the most efficient estimator from this family is given by
� � 0�6120	.

The consequence of (3.55) is that the optimal value of � scales linearly with 	.
Of course, we could just use squared loss in such a situation, but in general, we
will not know the exact noise model, and squared loss does not lead to robust
estimators. The following lemma (which will come handy in the next section)
shows that this is a general property of the �-insensitive loss.

Lemma 3.19 (Linear Dependency between �-Tube Width and Variance) Denote
by p a symmetric density with variance 	 � 0. Then the optimal value of � (i.e. the value
that achieves maximum asymptotic efficiency) for an estimator using the �-insensitive loss
is given by

�opt � 	 argmin
�

1�
pstd(�
 )� pstd(
 )

�2
�
1�

� �

��
pstd(
 �)d
 �

�
� (3.56)

where pstd(
 ) :� 	p(	
 � ���) is the standardized version of p(y��), i.e. it is obtained by
rescaling p(y��) to zero mean and unit variance.
Since pstd is independent of 	, we have a linear dependency between �opt and 	.
The scaling factor depends on the noise model.

Proof We prove (3.56) by rewriting the efficiency e(�) in terms of pstd via p(y��)�
	�1pstd(	�1(y� �)). This yields

e(�)�
Q2

IG
�

�
	�1pstd(�	�1�)� 	�1pstd(	�1�)

�2
	�2

�
1� � �

�� 	
�1pstd(	�1�)d�

� �

�
pstd(�	�1�)� pstd(	�1�)

�2�
1� � ��1�

���1� pstd(�)d�
�

The maximum of e(�) does not depend directly on �, but on 	�1� (which is
independent of 	). Hence we can find argmax � e(�) by solving (3.56).

Lemma 3.19 made it apparent that in order to adjust � we have to know 	 be-
forehand. Unfortunately, the latter is usually unknown at the beginning of the
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estimation procedure.8 The solution to this dilemma is to make � adaptive.

3.4.3 Adaptive Loss Functions

We again consider the trimmed mean estimator, which discards a predefined
fraction of largest and smallest samples. This method belongs to the more general
class of quantile estimators, which base their estimates on the value of samples
in a certain quantile. The latter methods do not require prior knowledge of the
variance, and adapt to whatever scale is required. What we need is a technique
which connects 	 (in Huber’s robust loss function) or � (in the �-insensitive loss
case) with the deviations between the estimate �̂ and the random variables yi.
Let us analyze what happens to the negative log likelihood, if, in the �-

insensitive case, we change � to �� Æ (with Æ � � ) while keeping �̂ fixed. In par-
ticular we assume that �Æ� is chosen sufficiently small such that for all i � 1� � � � �m,

��̂� yi�
�
� �� Æ if ��̂� yi� � �

� �� Æ if ��̂� yi� � �
(3.57)

Moreover denote by m��m��m� the number of samples for which ��̂ � yi� is less
than, equal to, or greater than �, respectively. Then
m

∑
i�1
��̂� yi���Æ � ∑

��̂�yi���

��̂� yi�� � ∑
��̂�yi���

��̂� yi�� �m�Æ� ∑
��̂�yi ���

��̂� yi���Æ

�

m

∑
i�1
��̂� yi�� �

�
m�Æ if Æ � 0�

(m� �m�)Æ otherwise.
(3.58)

In other words, the amount by which the loss changes depends only on the
quantiles at �. What happens if we make � itself a variable of the optimization
problem? By the scaling properties of (3.58) one can see that for � � [0� 1]

minimize
�̂��

1
m

m

∑
i�1
��̂� yi�� � �� (3.59)

is minimized if � is chosen such that�-Property
m�

m
� � � m� �m�

m
� (3.60)

This relation holds since at the solution (�̂� �) the solution also has to be optimal
wrt. � alone while keeping �̂ fixed. In the latter case, however, the derivatives of

8. The obvious question is why one would ever like to choose an �-insensitive loss in the
presence of Gaussian noise in the first place. If the complexity of the function expansion is
of no concern and the highest accuracy is required, squared loss is to be preferred. In most
cases, however, it is not quite clear what exactly the type of the additive noise model is. This
is when we would like to have a more conservative estimator. In practice, the �-insensitive
loss has been shown to work rather well on a variety of tasks (Chapter 9).
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the log-likelihood (i.e. error) termwrt. � at the solution are given by m�
m and m��m�

m
on the left and right hand side respectively.9 These have to cancel with � which
proves the claim. Furthermore, computing the derivative of (3.59) with respect to
�̂ shows that the number of samples outside the interval [� � �� � � �] has to be
equal on both halves (�
� �� �) and (�� ��
). We have the following theorem:

Theorem 3.20 (Quantile Estimation as Optimization Problem [481]) A quantile
procedure to estimate the mean of a distribution by taking the average of the samples
at the �

2 th and (1� �
2 )th quantile is equivalent to minimizing (3.59). In particular,

1. � is an upper bound on the fraction of samples outside the interval [�� �� �� �].

2. � is a lower bound on the fraction of samples outside the interval ]�� �� �� �[.

3. If the distribution p(�) is continuous, for all � � [0� 1]
lim
m��

P
�m�
m

� �
	
� 1 for all � � 0� (3.61)

One might question the practical advantage of this method over direct trimming
of the sample Y. In fact, the use of (3.59) is not recommended if all we want is to
estimate �. That said, (3.59) does allow us to employ trimmed estimation in the
nonparametric case, cf. Chapter 9.
Unfortunately, we were unable to find a similar method for Huber’s robust loss

function, since in this case the change in the negative log-likelihood incurred byExtension to
General Robust
Estimators

changing 	 not only involves the (statistical) rank of yi, but also the exact location
of samples with �yi � �� � 	.
Oneway to overcome this problem is re-estimate 	 adaptively whileminimizing

a term similar to (3.59) (see [180] for details in the context of boosting, Section 10.6.3
for a discussion of online estimation techniques, or [251] for a general overview).

3.4.4 Optimal Choice of �

Let us return to the �-insensitive loss. A combination of Theorems 3.20, 3.13 and
Lemma 3.19 allows us to compute optimal values of � for various distributions,
provided that an �-insensitive loss function is to be used in the estimation proce-
dure.10

The idea is to determine the optimal value of � for a fixed density p(y��) via
(3.56), and compute the corresponding fraction � of patterns outside the interval
[��� �� �� �].

9. Strictly speaking, the derivative is not defined at �; the lhs and rhs values are defined,
however, which is sufficient for our purpose.
10. This is not optimal in the sense of Theorem 3.15, which suggests the use of a more
adapted loss function. However (as already stated in the introduction of this chapter),
algorithmic or technical reasons such as computationally efficient solutions or limited
memory may provide sufficient motivation to use such a loss function.
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Table 3.2 Optimal � and � for various degrees of polynomial additive noise.

Polynomial Degree d 1 2 3 4 5
Optimal � 1 0.5405 0.2909 0.1898 0.1384
Optimal � for unit variance 0 0.6120 1.1180 1.3583 1.4844

Polynomial Degree d 6 7 8 9 10
Optimal � 0.1080 0.0881 0.0743 0.0641 0.0563
Optimal � for unit variance 1.5576 1.6035 1.6339 1.6551 1.6704

Theorem 3.21 (Optimal Choice of �) Denote by p a symmetric density with variance
	 � 0 and by pstd the corresponding rescaled density with zero mean and unit variance.
Then the optimal value of � (i.e. the value that achieves maximum asymptotic efficiency)
for an estimator using the �-insensitive loss is given by

� � 1�
� �

��
pstd(y)dy (3.62)

where � is chosen according to (3.56). This expression is independent of 	.

Proof The independence of 	 follows from the fact that � depends only on pstd.
Next we show (3.62). For a given density p, the asymptotically optimal value of
� is given by Lemma 3.19. The average fraction of patterns outside the interval
[�̂� �opt� �̂� �opt] is

� � 1�
� �opt��

��opt��
p(y��)dy � 1�

� ��1�opt

���1�opt
pstd(y)dy� (3.63)

which depends only on 	�1�opt and is thus independent of 	. Combining (3.63)
with (3.56) yields the theorem.

This means that given the type of additive noise, we can determine the value of
� such that it yields the asymptotically most efficient estimator independent of the
level of the noise. These theoretical predictions have since been confirmed rather
accurately in a set of regression experiments [95].
Let us now look at some special cases.

Example 3.22 (Optimal � for Polynomial Noise) Arbitrary polynomial noise models
(� e����d ) with unit variance can be written as

p(y) � cp exp
�
�c�p�y�p

�
where cp �

1
2



Γ
�
3�d

�
Γ
�
1�d

� d
Γ
�
1�d

� and c�p �
�


Γ
�
3�d

�
Γ
�
1�d

�
�d

�

where Γ(x) is the gamma function. Figure 3.3 shows �opt for polynomial degrees in the
interval [1� 10]. For convenience, the explicit numerical values are repeated in Table 3.2.
Observe that as the distribution becomes “lighter-tailed”, the optimal � decreases; in

other words, we may then use a larger amount of the data for the purpose of estimation.Heavy Tails�
Large � This is reasonable since it is only for very long tails of the distribution (data with many
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Figure 3.3 Optimal � and � for various degrees of polynomial additive noise.

outliers) that we have to be conservative and discard a large fraction of observations.

Even though we derived these relations solely for the case where a single number
(�) has to be estimated, experiments show that the same scaling properties hold
for the nonparametric case. It is still an open research problem to establish this
connection exactly.
As we shall see, in the nonparametric case, the effect of � will be that it both

determines the number of Support Vectors (i.e., the number of basis functions
needed to expand the solution) and also the fraction of function values f (xi) with
deviation larger than � from the corresponding observations. Further information
on this topic, both from the statistical and the algorithmic point of view, can be
found in Section 9.3.

3.5 Summary

We saw in this chapter that there exist two complementary concepts as to how risk
and loss functions should be designed. The first one is data driven and uses the
incurred loss as its principal guideline, possibly modified in order to suit the need
of numerical efficiency. This leads to loss functions and the definitions of empirical
and expected risk.
A second method is based on the idea of estimating (or at least approximating)

the distribution which may be responsible for generating the data. We showed


