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Computing the derivative of Remp[ f ] with respect to � and defining Fi j :� fi(xj),
we can see that the minimum of (3.16) is achieved if

F�y � F�F�� (3.17)

A sufficient condition for (3.17) is � �
�
F�F

��1
F�y where

�
F�F

��1 denotes the
(pseudo-)inverse of the matrix.
If F�F has a bad condition number (i.e. the quotient between the largest and theCondition of a

Matrix smallest eigenvalue of F�F is large), it is numerically difficult [423, 530] to solve
(3.17) for �. Furthermore, if n � m, i.e. if we have more basis functions fi than
training patterns xi, there will exist a subspace of solutions with dimension at least
n�m, satisfying (3.17). This is undesirable both practically (speed of computation)
and theoretically (we would have to deal with a whole class of solutions rather
than a single one).
One might also expect that if � is too rich, the discrepancy between Remp[ f ] and

R[ f ] could be large. For instance, if F is an m�m matrix of full rank, � contains
an f that predicts all target values yi correctly on the training data. Nevertheless,
we cannot expect that we will also obtain zero prediction error on unseen points.
Chapter 4 will show how these problems can be overcome by adding a so-called
regularization term to Remp[ f ].

3.3 A Statistical Perspective

Given a particular pattern x̃, we may want to ask what risk we can expect for it,
andwith which probability the corresponding loss is going to occur. In other words,
instead of (or in addition to) E

�
c(x̃� y� f (x̃)

�
for a fixed x̃, we may want to know the

distribution of y given x̃, i.e., P(y�x̃).
(Bayesian) statistics (see [338, 432, 49, 43] and also Chapter 16) often attempt

to estimate the density corresponding to the random variables (x� y), and in some
cases, we may really need information about p(x� y) to arrive at the desired conclu-
sions given the training data (e.g., medical diagnosis). However, we always have
to keep in mind that if we model the density p first, and subsequently, based on
this approximation, compute a minimizer of the expected risk, we will have to
make two approximations. This could lead to inferior or at least not easily pre-
dictable results. Therefore, wherever possible, we should avoid solving a more
general problem, since additional approximation steps might only make the esti-
mates worse [561].

3.3.1 Maximum Likelihood Estimation

All this said, we still may want to compute the conditional density p(y�x). For
this purpose we need to model how y is generated, based on some underlying
dependency f (x); thus, we specify the functional form of p(y�x� f (x)) andmaximize
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the expression with respect to f . This will provide us with the function f that is
most likely to have generated the data.

Definition 3.5 (Likelihood) The likelihood of a sample (x1� y1)� � � � (xm� ym) given an
underlying functional dependency f is given by

p(�x1� � � � � xm���y1� � � � � ym�� f ) �
m

∏
i�1
p(xi� yi� f ) �

m

∏
i�1
p(yi�xi� f )p(xi) (3.18)

Strictly speaking the likelihood only depends on the values f (x1)� � � � � f (xm) rather
than being a functional of f itself. To keep the notation simple, however, we
write p(�x1� � � � � xm���y1� � � � � ym�� f ) instead of the more heavyweight expression
p(�x1� � � � � xm���y1� � � � � ym��� f (x1)� � � � � f (xm)�).
For practical reasons, we convert products into sums by taking the negative

logarithm of P(�x1� � � � � xm���y1� � � � � ym�� f ), an expression which is then conve-
niently minimized. Furthermore, we may drop the p(xi) from (3.18), since they do
not depend on f . Thus maximization of (3.18) is equivalent to minimization of the
Log-LikelihoodLog-Likelihood

�[ f ] :�
m

∑
i�1
� ln p(yi�xi� f )� (3.19)

Remark 3.6 (Regression Loss Functions) Minimization of �[ f ] and of Remp[ f ] coin-Regression
cide if the loss function c is chosen according to

c(x� y� f (x))� � ln p(y�x� f )� (3.20)

Assuming that the target values y were generated by an underlying functional dependency
f plus additive noise � with density p� , i.e. yi � ftrue(xi)� �i, we obtain

c(x� y� f (x))� � ln p�(y� f (x))� (3.21)

Things are slightly different in classification. Since all we are interested in is the
probability that pattern x has label 1 or �1 (assuming binary classification), we
can transform the problem into one of estimating the logarithm of the probability
that a pattern assumes its correct label.Classification

Remark 3.7 (Classification Loss Functions) We have a finite set of labels, which al-
lows us to model P(y� f (x)) directly, instead of modelling a density. In the binary classi-
fication case (classes 1 and �1) this problem becomes particularly easy, since all we have
to do is assume functional dependency underlying P(1� f (x)): this immediately gives us
P(�1� f (x))� 1� P(1� f (x)). The link to loss functions is established via

c(x� y� f (x))� � lnP(y� f (x))� (3.22)

The same result can be obtained by minimizing the cross entropy6 between the classifica-

6. In the case of discrete variables the cross entropy between two distributions P and Q is
defined as ∑i P(i) lnQ(i).
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Table 3.1 Common loss functions and corresponding density models according to Re-
mark 3.6. As a shorthand we use c̃( f (x)� y) :� c(x� y� f (x)).

loss function c̃(�) density model p(�)

�-insensitive ����
1

2(1��) exp(�����)

Laplacian ��� 1
2 exp(����)

Gaussian 1
2 �
2 1�

2�
exp(� �2

2 )

Huber’s
robust loss

�
1
2� (�)

2 if ��� � �

��� � �
2 otherwise

�

�
exp(� �2

2� ) if ��� � �

exp( �2 � ���) otherwise

Polynomial 1
d ���

d d
2Γ(1�d) exp(����

d)

Piecewise
polynomial

�
1

d�d�1
���d if ��� � �

��� � � d�1
d otherwise

�

�
exp(� ���d

d�d�1
) if ����

exp(� d�1
d � ���) otherwise

tion labels yi and the probabilities p(y� f (x)), as is typically done in a generalized linear
models context (see e.g., [355, 232, 163]). For binary classification (with y � ��1�) we
obtain

c(x� y� f (x))�
1� y
2

lnP(y � 1� f (x))�
1� y
2

lnP(y � �1� f (x))� (3.23)

When substituting the actual values for y into (3.23), this reduces to (3.22).

At this point we have a choice in modelling P(y � 1� f (x)) to suit our needs.
Possible models include the logistic transfer function, the probit model, the inverse
complementary log-log model. See Section 16.3.5 for a more detailed discussion of
the choice of such link functions. Belowwe explain connections in somemore detail
for the logistic link function.
For a logistic model, where P(y � �1�x� f ) � exp(� 1

2 f (x)), we obtain after nor-
malization

P(y � 1�x� f ) :�
exp( f (x))

1� exp( f (x))
(3.24)

and consequently � lnP(y � 1�x� f ) � ln(1� exp(� f (x))). We thus recover (3.5) as
the loss function for classification. Choices other than (3.24) for a map � 	 [0� 1]
will lead to further loss functions for classification. See [579, 179, 596] and Section
16.1.1 for more details on this subject.
It is important to note that not every loss function used in classification corre-

sponds to such a density model (recall that in this case, the probabilities have to
add up to 1 for any value of f (x)). In fact, one of the most popular loss functions,
the soft margin loss (3.3), does not enjoy this property. A discussion of these issues
can be found in [521].
Table 3.1 summarizes common loss functions and the corresponding densityExamples

models as defined by (3.21), some of which were already presented in Section
3.1. It is an exhaustive list of the loss functions that will be used in this book for
regression. Figure 3.2 contains graphs of the functions.
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Figure 3.2 Graphs of loss functions and corresponding density models. upper left: Gaus-
sian, upper right: Laplacian, lower left: Huber’s robust, lower right: �-insensitive.

We conclude with a few cautionary remarks. The loss function resulting fromPractical
Considerations a maximum likelihood reasoning might be non-convex. This might spell trouble

when we try to find an efficient solution of the corresponding minimization prob-
lem. Moreover, we made a very strong assumption by claiming to know P(y�x� f )
explicitly, which was necessary in order to evaluate (3.20).
Finally, the solution we obtain by minimizing the log-likelihood depends on

the class of functions �. So we are in no better situation than by minimizing
Remp[ f ], albeit with the additional constraint, that the loss functions c(x� y� f (x))
must correspond to a probability density.

3.3.2 Efficiency

The above reasoning could mislead us into thinking that the choice of loss func-
tion is rather arbitrary, and that there exists no good means of assessing the per-
formance of an estimator. In the present section we will develop tools which can
be used to compare estimators that are derived from different loss functions. For
this purpose we need to introduce additional statistical concepts which deal with
the efficiency of an estimator. Roughly speaking, these give an indication of how
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“noisy” an estimator is with respect to a reference estimator.
We begin by formalizing the concept of an estimator. Denote by P(y��) a dis-

tribution of y depending (amongst other variables) on the parameters �, and by
Y� �y1� � � � � ym� anm-sample drawn iid from P(y��). Note that the use of the sym-
bol y bears no relation to the yi that are outputs of some functional dependency
(cf. Chapter 1). We employ this symbol because some of the results to be derived
will later be applied to the outputs of SV regression.
Next, we introduce the estimator �̂(Y) of the parameters �, based on Y. ForEstimator

instance, P(y��) could be a Gaussian with fixed variance and mean �, and �̂(Y)
could be the estimator (1�m)∑mi�1 yi.
To avoid cumbersome notation, we use the shorthand

E�

�
�(y)

�
:� EP(y��)

�
�(y)

�
�

�
�(y)dP(y��)� (3.25)

to express expectations of a random variable �(y) with respect to P(y��). One
criterion that we might impose on an estimator is that it be unbiased, i.e., that
on average, it tells us the correct value of the parameter it attempts to estimate.

Definition 3.8 (Unbiased Estimator) An unbiased estimator �̂(Y) of the parameters �
in P(y��) satisfies

E�

�
�̂(Y)

�
� �� (3.26)

In this section, we will focus on unbiased estimators. In general, however, the
estimators we are dealing with in this book will not be unbiased. In fact, they
will have a bias towards ‘simple’, low-complexity functions. Properties of such
estimators are more difficult to deal with, which is why, for the sake of simplicity,
we restrict ourselves to the unbiased case in this section. Note, however, that
“biasedness” is not a bad property by itself. On the contrary, there exist cases as
the one described by James and Stein [262] where biased estimators consistently
outperform unbiased estimators in the finite sample size setting, both in terms of
variance and prediction error.
A possible way to compare unbiased estimators is to compute their variance.

Other quantities such as moments of higher order or maximum deviation prop-
erties would be valid criteria as well, yet for historical and practical reasons the
variance has become a standard tool to benchmark estimators. The Fisher infor-
mation matrix is crucial for this purpose since it will tell us via the Cramér-Rao
bound (Theorem 3.11) the minimal possible variance for an unbiased estimator.
The idea is that the smaller the variance, the lower (typically) the probability that
�̂(Y) will deviate from � by a large amount. Therefore, we can use the variance as
a possible one number summary to compare different estimators.

Definition 3.9 (Score Function, Fisher Information, Covariance) Assume there ex-
ists a density p(y��) for the distribution P(y��) such that ln p(y��) is differentiable with
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respect to �. The score V�(Y) of P(y��) is a random variable defined by7Score Function

V�(Y) :� �� ln p(Y��)� ��

m

∑
i�1
ln p(yi��)�

m

∑
i�1

��p(yi��)
p(yi��)

� (3.27)

This score tells us how much the likelihood of the data depends on the different components
of �, and thus, in the maximum likelihood procedure, how much the data affect the choice
of �. The covariance of V�(Y) is called the Fisher information matrix I. It is given byFisher

Information
Ii j :� E�

�
��i ln p(Y��) 
 �� j ln p(Y��)

�
� (3.28)

and the covariance matrix B of the estimator �̂(Y) is defined byCovariance

Bi j :� E�

��
�̂i � E�

�
�̂i
���

�̂ j � E�

�
�̂ j
���

� (3.29)

The covariance matrix B tells us the amount of variation of the estimator. It can
therefore be used (e.g., by Chebychev’s inequality) to bound the probability that
�̂(Y) deviates from � by more than a certain amount.

Remark 3.10 (Expected Value of Fisher Score) One can check that the expected value
of V�(Y) is 0 since

E� [V�(Y)] �
�
p(Y��)�� ln p(Y��)dY� ��

�
p(Y��)dY � ��1 � 0� (3.30)

In other words, the contribution of Y to the adjustment of � averages to 0 over all possibleAverage Fisher
Score Vanishes Y, drawn according to P(Y��). Equivalently we could say that the average likelihood for Y

drawn according to P(Y��) is extremal, provided we choose �: the derivative of the expected
likelihood of the data E�

�
lnP(Y��)

�
with respect to � vanishes. This is also what we expect,

namely that the “proper” distribution is on average the one with the highest likelihood.

The following theorem gives a lower bound on the variance of an estimator, i.e.
B is found in terms of the Fisher information I. This is useful to determine how
well a given estimator performs with respect to the one with the lowest possible
variance.

Theorem 3.11 (Cramér and Rao [425]) Any unbiased estimator �̂(Y) satisfies

det IB � 1� (3.31)

Proof We prove (3.31) for the scalar case. The extension to matrices is left as an
exercise (see Problem 3.10). Using the Cauchy-Schwarz inequality, we obtain

�
E�

�
(V�(Y)� E� [V�(Y)])

�
�̂(Y)� E�

�
�̂(Y)

����2
(3.32)

� E�

�
(V�(Y)� E� [V�(Y)])

2
�
E�

	�
�̂(Y)� E�

�
�̂(Y)

��2

� IB� (3.33)

7. Recall that ��p(Y��) is the gradient of p(Y��) with respect to the parameters �1� � � � � �n.
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At the same time, E� [V�(Y)] � 0 implies that�
E�

�
(V�(Y)� E� [V�(Y)])

�
�̂(Y)� E�

�
�̂(Y)

����2
(3.34)

� E�

�
V�(Y)�̂(Y)

�2
(3.35)

�

��
p(Y��)V�(Y)�̂(Y)dY

�2

�

�
��

�
p(Y��)�̂(Y)dY

�2
� (���)2 � 1� (3.36)

since we may interchange integration by Y and ��.

Eq. (3.31) lends itself to the definition of a one-number summary of the properties
of an estimator, namely how closely the inequality is met.

Definition 3.12 (Efficiency) The statistical efficiency e of an estimator �̂(Y) is defined as

e :� 1�det IB� (3.37)

The closer e is to 1, the lower the variance of the corresponding estimator �̂(Y).
For a special class of estimators minimizing loss functions, the following theorem
allows us to compute B and e efficiently.

Theorem 3.13 (Murata, Yoshizawa, Amari [379, Lemma 3]) Assume that �̂ is de-
fined by �̂(Y) :� argmin� d(Y� �) and that d is a twice differentiable function in �.
Then asymptotically, for increasing sample size m 	 , the variance B is given by
B � Q�1GQ�1. HereAsymptotic

Variance
Gij :� cov�

�
��i d (Y� �) � �� j d (Y� �)

�
and (3.38)

Qij :� E�

�
�2�i� j d(Y� �)

�
� (3.39)

and therefore e � (detQ)2�(det IG).

This means that for the class of estimators defined via d, the evaluation of their
asymptotic efficiency can be conveniently achieved via (3.38) and (3.39). For scalar
valued estimators �(Y) � � , these expressions can be greatly simplified to

I �
� �

�� ln p(Y��)
�2 dP(Y��)� (3.40)

G �
�
(��d(Y� �))

2 dP(Y��)� (3.41)

Q �
�

�2�d(Y� �)dP(Y��)� (3.42)

Finally, in the case of continuous densities, Theorem 3.13 may be extended to
piecewise twice differentiable continuous functions d, by convolving the latter
with a twice differentiable smoothing kernel, and letting the width of the smooth-
ing kernel converge to zero. We will make use of this observation in the next sec-
tion when studying the efficiency of some estimators.
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The current section concludes with the proof that the maximum likelihood
estimator meets the Cramér-Rao bound.

Theorem 3.14 (Efficiency of Maximum Likelihood [118, 218, 43]) The maximum
likelihood estimator (cf. (3.18) and (3.19)) given by

�̂(Y) :� argmax
�

ln p(Y��)� argmin
�

�[�] (3.43)

is asymptotically efficient (e � 1).

To keep things simple we will prove (3.43) only for the class of twice differentiable
continuous densities by applying Theorem 3.13. For a more general proof see
[118, 218, 43].

Proof By construction, G is equal to the Fisher information matrix, if we choose
d according to (3.43). Hence a sufficient condition is that Q � �I, which is what
we show below. To this end we expand the integrand of (3.42),

�2�d(Y� �)� �2� ln p(Y��)�
�2� p(Y��)
p(Y��)

�

�
��p(Y��)
p(Y��)

�2
�

�2� p(Y��)
p(Y��)

�V2� (Y)� (3.44)

The expectation of the second term in (3.44) equals �I. We now show that the
expectation of the first term vanishes;
�
p(Y��)

�2� p(Y��)
p(Y��)

dY � �2�

�
p(Y��)dY � �2�1 � 0� (3.45)

Hence Q��I and thus e� Q2�(IG)� 1. This proves that themaximum likelihood
estimator is asymptotically efficient.

It appears as if the best thing we could do is to use the maximum likelihood (ML)
estimator. Unfortunately, reality is not quite as simple as that. First, the above
statement holds only asymptotically. This leads to the (justified) suspicion that
for finite sample sizes we may be able to do better than ML estimation. Second,
practical considerations such as the additional goal of sparse decomposition may
lead to the choice of a non-optimal loss function.
Finally, we may not know the true density model, which is required for the

definition of the maximum likelihood estimator. We can try to make an educated
guess; bad guesses of the class of densities, however, can lead to large errors in the
estimation (see, e.g., [251]). This prompted the development of robust estimators.

3.4 Robust Estimators

So far, in order to make any practical predictions, we had to assume a certain
class of distributions from which P(Y) was chosen. Likewise, in the case of risk
functionals, we also assumed that training and test data are identically distributed.
This section provides tools to safeguard ourselves against cases where the above


