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The popular choice is to minimize the sum of squares of the residuals f (x)� y.Squared Loss
As we shall see in Section 3.3.1, this corresponds to the assumption that we have
additive normal noise corrupting the observations yi. Consequently we minimize

c(x� y� f (x))� ( f (x)� y)2 or equivalently c̃(�) � �2� (3.8)

For convenience of subsequent notation, 12�
2 rather than �2 is often used.

An extension of the soft margin loss (3.3) to regression is the �-insensitive loss�-insensitive
Loss and �1 Loss function [561, 572, 562]. It is obtained by symmetrization of the “hinge” of (3.3),

c̃(�) �max(��� � �� 0)�: ����� (3.9)

The idea behind (3.9) is that deviations up to � should not be penalized, and all
further deviations should incur only a linear penalty. Setting � � 0 leads to an �1
loss, i.e., to minimization of the sum of absolute deviations. This is written

c̃(�) � ���� (3.10)

We will study these functions in more detail in Section 3.4.2.
For efficient implementations of learning procedures, it is crucial that loss func-Practical

Considerations tions satisfy certain properties. In particular, they should be cheap to compute,
have a small number of discontinuities (if any) in the first derivative, and be con-
vex in order to ensure the uniqueness of the solution (see Chapter 6 and also Prob-
lem 3.6 for details). Moreover, we may want to obtain solutions that are compu-
tationally efficient, which may disregard a certain number of training points. This
leads to conditions such as vanishing derivatives for a range of function values
f (x). Finally, requirements such as outlier resistance are also important for the con-
struction of estimators.

3.2 Test Error and Expected Risk

Now that we have determined how errors should be penalized on specific in-
stances (x� y� f (x)), we have to find a method to combine these (local) penalties.
This will help us to assess a particular estimate f .
In the following, we will assume that there exists a probability distribution

P(x� y) on � � � which governs the data generation and underlying functional
dependency. Moreover, we denote by P(y�x) the conditional distribution of y given
x, and by dP(x� y) and dP(y�x) the integrals with respect to the distributions P(x� y)
and P(y�x) respectively (cf. Section B.1.3).

3.2.1 Exact Quantities

Unless stated otherwise, we assume that the data (x� y) are drawn iid (independent
and identically distributed, see Section B.1) from P(x� y). Whether or not we have
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knowledge of the test patterns at training time4 makes a significant difference in
the design of learning algorithms. In the latter case, we will want to minimize the
test error on that specific test set; in the former case, the expected error over all possible
test sets.

Definition 3.2 (Test Error) Assume that we are not only given the training data
�x1� � � � � xm� along with target values �y1� � � � ym� but also the test patterns �x�1� � � � x

�

m��
on which we would like to predict y�i (i � 1� � � � �m

�). Since we already know x�i, all we
should care about is to minimize the expected error on the test set. We formalize this in
the following definitionTransduction

Problem
Rtest[ f ] :�

1
m�

m�

∑
i�1

�
�

c(x�i� y� f (x
�

i))dP(y�x
�

i)� (3.11)

Unfortunately, this problem, referred to as transduction, is quite difficult to address,
both computationally and conceptually, see [562, 267, 37, 211]. Instead, one typi-
cally considers the case where no knowledge about test patterns is available, as
described in the following definition.

Definition 3.3 (Expected Risk) If we have no knowledge about the test patterns (or
decide to ignore them) we should minimize the expected error over all possible training
patterns. Hence we have to minimize the expected loss with respect to P and c

R[ f ] :� E
�
Rtest[ f ]

�
� E

�
c(x� y� f (x))

�
�

�
���

c(x� y� f (x))dP(x� y)� (3.12)

Here the integration is carried out with respect to the distribution P(x� y). Again,
just as (3.11), this problem is intractable, since we do not know P(x� y) explicitly.
Instead, we are only given the training patterns (xi� yi). The latter, however, allow
us to replace the unknown distribution P(x� y) by its empirical estimate.
To study connections between loss functions and density models, it will be

convenient to assume that there exists a density p(x� y) corresponding to P(x� y).
This means that we may replace

�
dP(x� y) by

�
p(x� y)dxdy and the appropriate

measure on �� �. Such a density p(x� y) need not always exist (see Section B.1 for
more details) but we will not give further heed to these concerns at present.

3.2.2 Approximations

Unfortunately, this change in notation did not solve the problem. All we have at
our disposal is the actual training data. What one usually does is replace p(x� y) by
the empirical densityEmpirical

Density
pemp(x� y) :�

1
m

m

∑
i�1

Æxi (x)Æyi (y)� (3.13)

4. The test outputs, however, are not available during training.
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Here Æx�(x) denotes the Æ-distribution, satisfying
�
Æx�(x) f (x)dx � f (x�). The hope

is that replacing p by pemp will lead to a quantity that is “reasonably close” to the
expected risk. This will be the case if the class of possible solutions f is sufficiently
limited [568, 571]. The issue of closeness with regard to different estimators will be
discussed in further detail in Chapters 5 and 12. Substituting pemp(x� y) into (3.12)
leads to the empirical risk:

Definition 3.4 (Empirical Risk) The empirical risk is defined as

Remp[ f ] :�
�
���

c(x� y� f (x))pemp(x� y)dxdy�
1
m

m

∑
i�1
c(xi� yi� f (xi))� (3.14)

This quantity has the advantage that, given the training data, we can readily
compute and alsominimize it. This constitutes a particular case ofwhat is called an
M-estimator in statistics. Estimators of this type are studied in detail in the field ofM-Estimator
empirical processes [554]. As pointed out in Section 3.1, it is crucial to understand
that although our particular M-estimator is built fromminimizing a loss, this need
not always be the case. From a decision-theoretic point of view, the question of
which loss to choose is a separate issue, which is dictated by the problem at hand
as well as the goal of trying to evaluate the performance of estimation methods,
rather than by the problem of trying to define a particular estimation method
[582, 166, 43].
These considerations aside, it may appear as if (3.14) is the answer to ourIll-Posed

Problems problems, and all that remains to be done is to find a suitable class of functions � �
f such that we canminimize Remp[ f ] with respect to�. Unfortunately, determining
� is quite difficult (see Chapters 5 and 12 for details). Moreover, the minimization
of Remp[ f ] can lead to an ill-posed problem [538, 370]. We will show this with a
simple example.
Assume that we want to solve a regression problem using the quadratic lossExample of an

Ill-Posed
Problem

function (3.8) given by c(x� y� f (x) � (y � f (x))2. Moreover, assume that we are
dealing with a linear class of functions,5 say

� :�

�
f

����� f (x) �
n

∑
i�1

�i fi(x) with �i � �

�
� (3.15)

where the fi are functions mapping � to � .
We want to find the minimizer of Remp, i.e.,

minimize
f��

Remp[ f ] �minimize
���n

1
m

m

∑
i�1

�
yi �

n

∑
j�1

� j f j(xi)

�2
� (3.16)

5. In the simplest case, assuming � is contained in a vector space, these could be functions
that extract coordinates of x; in other words, �would be the class of linear functions on �.
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Computing the derivative of Remp[ f ] with respect to � and defining Fi j :� fi(xj),
we can see that the minimum of (3.16) is achieved if

F�y � F�F�� (3.17)

A sufficient condition for (3.17) is � �
�
F�F

	�1
F�y where

�
F�F

	�1 denotes the
(pseudo-)inverse of the matrix.
If F�F has a bad condition number (i.e. the quotient between the largest and theCondition of a

Matrix smallest eigenvalue of F�F is large), it is numerically difficult [423, 530] to solve
(3.17) for �. Furthermore, if n � m, i.e. if we have more basis functions fi than
training patterns xi, there will exist a subspace of solutions with dimension at least
n�m, satisfying (3.17). This is undesirable both practically (speed of computation)
and theoretically (we would have to deal with a whole class of solutions rather
than a single one).
One might also expect that if � is too rich, the discrepancy between Remp[ f ] and

R[ f ] could be large. For instance, if F is an m�m matrix of full rank, � contains
an f that predicts all target values yi correctly on the training data. Nevertheless,
we cannot expect that we will also obtain zero prediction error on unseen points.
Chapter 4 will show how these problems can be overcome by adding a so-called
regularization term to Remp[ f ].

3.3 A Statistical Perspective

Given a particular pattern x̃, we may want to ask what risk we can expect for it,
andwith which probability the corresponding loss is going to occur. In other words,
instead of (or in addition to) E

�
c(x̃� y� f (x̃)

�
for a fixed x̃, we may want to know the

distribution of y given x̃, i.e., P(y�x̃).
(Bayesian) statistics (see [338, 432, 49, 43] and also Chapter 16) often attempt

to estimate the density corresponding to the random variables (x� y), and in some
cases, we may really need information about p(x� y) to arrive at the desired conclu-
sions given the training data (e.g., medical diagnosis). However, we always have
to keep in mind that if we model the density p first, and subsequently, based on
this approximation, compute a minimizer of the expected risk, we will have to
make two approximations. This could lead to inferior or at least not easily pre-
dictable results. Therefore, wherever possible, we should avoid solving a more
general problem, since additional approximation steps might only make the esti-
mates worse [561].

3.3.1 Maximum Likelihood Estimation

All this said, we still may want to compute the conditional density p(y�x). For
this purpose we need to model how y is generated, based on some underlying
dependency f (x); thus, we specify the functional form of p(y�x� f (x)) andmaximize


