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As usual, exercises for all sections can be found at the end. The chapter requiresPrerequisites
knowledge of probability theory, as introduced in Section B.1.

3.1 Loss Functions

Let us begin with a formal definition of what we mean by the loss incurred by a
function f at location x, given an observation y.

Definition 3.1 (Loss Function) Denote by (x� y� f (x)) � �� �� � the triplet consist-
ing of a pattern x, an observation y and a prediction f (x). Then the map c : �� �� ��
[0��)with the property c(x� y� y)� 0 for all x �� and y � �will be called a loss function.

Note that we require c to be a nonnegative function. This means that we will never
get a payoff from an extra good prediction. If the latter was the case, we could
always recover non-negativity (provided the loss is bounded from below), by
using a simple shift operation (possibly depending on x). Likewise we can always
satisfy the condition that exact predictions ( f (x) � y) never cause any loss. The
advantage of these extra conditions on c is that we know that the minimum of the
loss is 0 and that it is obtainable, at least for a given x� y.
Next we will formalize different kinds of loss, as described informally in the

introduction of the chapter. Note that the incurred loss is not always the quantityMinimized Loss
�� Incurred Loss that we will attempt to minimize. For instance, for algorithmic reasons, some loss

functions will prove to be infeasible (the binary loss, for instance, can lead to NP-
hard optimization problems [367]). Furthermore, statistical considerations such as
the desire to obtain confidence levels on the prediction (Section 3.3.1) will also
influence our choice.

3.1.1 Binary Classification

The simplest case to consider involves counting the misclassification error if pat-
tern x is classified wrongly we incur loss 1, otherwise there is no penalty.:Misclassification

Error
c(x� y� f (x))�

�
0 if y � f (x)

1 otherwise
(3.1)
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This definition of c does not distinguish between different classes and types of
errors (false positive or negative).1

A slight extension takes the latter into account. For the sake of simplicity let usAsymmetric and
Input-Dependent
Loss

assume, as in (3.1), that we have a binary classification problem. This time, how-
ever, the loss may depend on a function c̃(x) which accounts for input-dependence,
i.e.

c(x� y� f (x))�

�
0 if y � f (x)

c̃(x) otherwise
(3.2)

A simple (albeit slightly contrived) example is the classification of objects into
rocks and diamonds. Clearly, the incurred loss will depend largely on the weight
of the object under consideration.
Analogously, we might distinguish between errors for y � 1 and y � �1 (see,

e.g., [331] for details). For instance, in a fraud detection application, we would like
to be really sure about the situation before taking any measures, rather than losing
potential customers. On the other hand, a blood bank should consider even the
slightest suspicion of disease before accepting a donor.
Rather than predicting only whether a given object x belongs to a certain class

y, we may also want to take a certain confidence level into account. In this case,Confidence Level
f (x) becomes a real-valued function, even though y � ��1� 1�.
In this case, sgn ( f (x)) denotes the class label, and the absolute value 	 f (x)	 the

confidence of the prediction. Corresponding loss functions will depend on the
product y f (x) to assess the quality of the estimate. The soft margin loss function, asSoft Margin Loss
introduced by Bennett and Mangasarian [40, 111], is defined as

c(x� y� f (x))�max(0� 1� y f (x)) �

�
0 if y f (x)
 1�

1� y f (x) otherwise�
� (3.3)

In some cases [348, 125] (see also Section 10.6.2) the squared version of (3.3)
provides an expression that can be minimized more easily;

c(x� y� f (x))�max(0� 1� y f (x))2� (3.4)

The soft margin loss closely resembles the so-called logistic loss function (cf.Logistic Loss
[251], as well as Problem 3.1 and Section 16.1.1);

c(x� y� f (x))� ln
�
1� exp

�
�y f (x)

��
� (3.5)

We will derive this loss function in Section 3.3.1. It is used in order to associate a
probabilistic meaning with f (x).
Note that in both (3.3) and (3.5) (nearly) no penalty occurs if y f (x) is sufficiently

large, i.e. if the patterns are classified correctly with large confidence. In particular,
in (3.3) a minimum confidence of 1 is required for zero loss. These loss functions

1. A false positive is a point which the classifier erroneously assigns to class 1, a false negative
is erroneously assigned to class �1.
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Figure 3.1 From left to right: 0-1 loss, linear soft margin loss, logistic regression, and
quadratic soft margin loss. Note that both soft margin loss functions are upper bounds
on the 0-1 loss.

led to the development of large margin classifiers (see [491, 460, 504] and Chapter 5
for further details). Figure 3.1 depicts various popular loss functions.2

Matters are more complex when dealing with more than two classes. EachMulti Class
Discrimination type of misclassification could potentially incur a different loss, leading to an

M�Mmatrix (M being the number of classes) with positive off-diagonal and zero
diagonal entries. It is still a matter of ongoing research in which way a confidence
level should be included in such cases (cf. [41, 311, 593, 161, 119]).

3.1.2 Regression

When estimating real-valued quantities, it is usually the size of the difference
y � f (x), i.e. the amount of misprediction, rather than the product y f (x), which
is used to determine the quality of the estimate. For instance, this can be the actual
loss incurred by mispredictions (e.g., the loss incurred by mispredicting the value
of a financial instrument at the stock exchange), provided the latter is known and
computationally tractable.3 Assuming location independence, in most cases the
loss function will be of the type

c(x� y� f (x))� c̃( f (x)� y)� (3.7)

See Figure 3.2 below for several regression loss functions. Below we list the ones
most common in kernel methods.

2. Other popular loss functions from the generalized linear model context include the
inverse complementary log-log function. It is given by

c(x� y� f (x)) � 1� exp(�exp(y f (x)))� (3.6)

This function, unfortunately, is not convex and therefore it will not lead to a convex opti-
mization problem. However, it has nice robustness properties and therefore we think that
it should be investigated in the present context.
3. As with classification, computational tractability is one of the primary concerns. This is
not always satisfying from a statistician’s point of view, yet it is crucial for any practical
implementation of an estimation algorithm.
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The popular choice is to minimize the sum of squares of the residuals f (x)� y.Squared Loss
As we shall see in Section 3.3.1, this corresponds to the assumption that we have
additive normal noise corrupting the observations yi. Consequently we minimize

c(x� y� f (x))� ( f (x)� y)2 or equivalently c̃(�) � �2� (3.8)

For convenience of subsequent notation, 12�
2 rather than �2 is often used.

An extension of the soft margin loss (3.3) to regression is the �-insensitive loss�-insensitive
Loss and �1 Loss function [561, 572, 562]. It is obtained by symmetrization of the “hinge” of (3.3),

c̃(�) �max(	�	 � �� 0)�: 	�	�� (3.9)

The idea behind (3.9) is that deviations up to � should not be penalized, and all
further deviations should incur only a linear penalty. Setting � � 0 leads to an �1
loss, i.e., to minimization of the sum of absolute deviations. This is written

c̃(�) � 	�	� (3.10)

We will study these functions in more detail in Section 3.4.2.
For efficient implementations of learning procedures, it is crucial that loss func-Practical

Considerations tions satisfy certain properties. In particular, they should be cheap to compute,
have a small number of discontinuities (if any) in the first derivative, and be con-
vex in order to ensure the uniqueness of the solution (see Chapter 6 and also Prob-
lem 3.6 for details). Moreover, we may want to obtain solutions that are compu-
tationally efficient, which may disregard a certain number of training points. This
leads to conditions such as vanishing derivatives for a range of function values
f (x). Finally, requirements such as outlier resistance are also important for the con-
struction of estimators.

3.2 Test Error and Expected Risk

Now that we have determined how errors should be penalized on specific in-
stances (x� y� f (x)), we have to find a method to combine these (local) penalties.
This will help us to assess a particular estimate f .
In the following, we will assume that there exists a probability distribution

P(x� y) on � � � which governs the data generation and underlying functional
dependency. Moreover, we denote by P(y	x) the conditional distribution of y given
x, and by dP(x� y) and dP(y	x) the integrals with respect to the distributions P(x� y)
and P(y	x) respectively (cf. Section B.1.3).

3.2.1 Exact Quantities

Unless stated otherwise, we assume that the data (x� y) are drawn iid (independent
and identically distributed, see Section B.1) from P(x� y). Whether or not we have


