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2.5 Summary

The crucial ingredient of SVMs and other kernel methods is the so-called kernel
trick (see (2.7) and Remark 2.8), which permits the computation of dot products in
high-dimensional feature spaces, using simple functions defined on pairs of input
patterns. This trick allows the formulation of nonlinear variants of any algorithm
that can be cast in terms of dot products, SVMs being but the most prominent ex-
ample. The mathematical result underlying the kernel trick is almost a century old
[359]. Nevertheless, it was only much later that it was exploited by the machine
learning community for the analysis [4] and construction of algorithms [62], and
that it was described as a general method for constructing nonlinear generaliza-
tions of dot product algorithms [480].

The present chapter has reviewed the mathematical theory of kernels. We
started with the class of polynomial kernels, which can be motivated as com-
puting a combinatorially large number of monomial features rather efficiently.
This led to the general question of which kernel can be used, or: which kernel
can be represented as a dot product in a linear feature space. We defined this class
and discussed some of its properties. We described several ways how, given such a
kernel, one can construct a representation in a feature space. The most well-known
representation employs Mercer’s theorem, and represents the feature space as an
£, space defined in terms of the eigenfunctions of an integral operator associated
with the kernel. An alternative representation uses elements of the theory of re-
producing kernel Hilbert spaces, and yields additional insights, representing the
linear space as a space of functions written as kernel expansions. We gave an in-
depth discussion of the kernel trick in its general form, including the case where
we are interested in dissimilarities rather than similarities; that is, when we want
to come up with nonlinear generalizations of distance-based algorithms rather
than dot-product-based algorithms.

In both cases, the underlying philosophy is the same: we are trying to express a
complex nonlinear algorithm in terms of simple geometrical concepts, and we are
then dealing with it in a linear space. This linear space may not always be readily
available; in some cases, it may even be hard to construct explicitly. Nevertheless,
for the sake of design and analysis of the algorithms, it is sufficient to know that
the linear space exists, empowering us to use the full potential of geometry, linear
algebra and functional analysis.

2.6 Problems

2.1 (Monomial Features in R* @) Verify the second equality in (2.9).

2.2 (Multiplicity of Monomial Features in RY [515] ee) Consider the monomial ker-
nel k(x,x") = (x,x")" (where x,x' € RN), generating monomial features of order d. Prove
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that a valid feature map for this kernel can be defined coordinate-wise as

() = ﬁ 1" (X (2.95)

for every m € N", ¥, [m]; = d (i.e., every such m corresponds to one dimension of H).

2.3 (Inhomogeneous Polynomial Kernel ee) Prove that the kernel (2.70) induces a
feature map into the space of all monomials up to degree d. Discuss the role of c.

2.4 (Eigenvalue Criterion of Positive Definiteness o) Prove that a symmetric matrix
is positive definite if and only if all its eigenvalues are nonnegative (see Appendix B).

2.5 (Dot Products are Kernels o) Prove that dot products (Definition B.7) are positive
definite kernels.

2.6 (Kernels on Finite Domains ee) Prove that for finite X, say X = {x1,...,x,}, kis
a kernel if and only if the m x m matrix (k(x;, x;));j is positive definite.

2.7 (Positivity on the Diagonal ) From Definition 2.5, prove that a kernel satisfies
k(x,x) > 0 for all x € X.

2.8 (Cauchy-Schwarz for Kernels ee) Give an elementary proof of Proposition 2.7.
Hint: start with the general form of a symmetric 2 x 2 matrix, and derive conditions for
its coefficients that ensure that it is positive definite.

2.9 (PD Kernels Vanishing on the Diagonal o) Use Proposition 2.7 to prove that a
kernel satisfying k(x, x) = for all x € X is identically zero.
How does the RKHS look in this case? Hint: use (2.31).

2.10 (Two Kinds of Positivity e) Give an example of a kernel which is positive definite
according to Definition 2.5, but not positive in the sense that k(x,x") > 0 for all x,x.
Give an example of a kernel where the contrary is the case.

2.11 (General Coordinate Transformations e) Prove that if o : X — X is a bijection,
and k(x, x") is a kernel, then k(o (x), o(x")) is a kernel, too.

2.12 (Positivity on the Diagonal e) Prove that positive definite kernels are positive on
the diagonal, k(x,x) > 0 for all x € X. Hint: use m = 1 in (2.15).

2.13 (Symmetry of Complex Kernels o) Prove that complex-valued positive definite
kernels are symmetric (2.18).

2.14 (Real Kernels vs. Complex Kernels o) Prove that a real matrix satisfies (2.15) for
all c; € Cif and only if it is symmetric and it satisfies (2.15) for real coefficients c;.
Hint: decompose each c; in (2.15) into real and imaginary parts.
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2.15 (Rank-One Kernels o) Prove that if f is a real-valued function on X, then k(x, x') :=
f(x)f(x") is a positive definite kernel.

2.16 (Bayes Kernel ee) Consider a binary pattern recognition problem. Specialize the
last problem to the case where f : X — {£1} equals the Bayes decision function y(x),
i.e., the classification with minimal risk subject to an underlying distribution P(x,y)
generating the data.

Argque that this kernel is particularly suitable since it renders the problem linearly
separable in a 1D feature space: State a decision function (cf. (1.35)) that solves the problem
(hint: you just need one parameter o, and you may set it to 1; moreover, use b = 0) [124].

The final part of the problem requires knowledge of Chapter 16: Consider now the
situation where some prior P(f) over the target function class is given. What would the
optimal kernel be in this case? Discuss the connection to Gaussian processes.

2.17 (Inhomogeneous Polynomials e) Prove that the inhomogeneous polynomial (2.70)
is a positive definite kernel, e.g., by showing that it is a linear combination of homogeneous
polynomial kernels with positive coefficients. What kind of features does this kernel com-
pute [561]7

2.18 (Normalization in Feature Space ) Given a kernel k, construct a corresponding
normalized kernel k by normalizing the feature map ® such that for all x € X, || ®(x)|| =1
(cf. also Definition 12.35). Discuss the relationship between normalization in input space
and normalization in feature space for Gaussian kernels and homogeneous polynomial
kernels.

2.19 (Cosine Kernel o) Suppose X is a dot product space, and x,x" € X. Prove that
k(x,x") = cos(£(x, x)) is a positive definite kernel. Hint: use Problem 2.18.

2.20 (Alignment Kernel o) Let (K,K'); := 3,;; K;;K}; be the Frobenius dot product
of two matrices. Prove that the empirical alignment of fwo Gram matrices [124],
A(K,K") := (K,K") . /7/(K,K) (K", K"}, is a positive definite kernel.

Note that the alignment can be used for model selection, putting Ki; := yy; (cf.
Problem 2.16) and K;; = sgn (k(x;, x;)) or K;j := sgn (k(x;, x;)) — b (cf. [124]).

2.21 (Equivalence Relations as Kernels eee) Consider a similarity measure k : X —
{0,1} with

k(x,x) =1 forall x € X. (2.96)
Prove that k is a positive definite kernel if and only if, for all x,x",x" € X,

k(x,x") =1 <= k(x',x) = 1 and (2.97)
k(x,x") = k(x',x") =1 = k(x,x") = 1. (2.98)

Equations (2.96) to (2.98) amount to saying that k = I, where T C X x X is an equiva-
lence relation.
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As a simple example, consider an undirected graph, and let (x, x') € T whenever x and x'
are in the same connected component of the graph. Show that T is an equivalence relation.

Find examples of equivalence relations that lend themselves to an interpretation as
similarity measures. Discuss whether there are other relations that one might want to use
as similarity measures.

2.22 (Different Feature Spaces for the Same Kernel o) Give an example of a kernel
with two valid feature maps ®,, ®,, mapping into spaces Hq, H, of different dimensions.

2.23 (Converse of Mercer’s Theorem o) Prove that if an integral operator kernel k
admits a uniformly convergent dot product representation on some compact set X x X,

e, 2) = S ), (299)
1=1

then it is positive definite. Hint: show that
00 fo's) 2
()i (x! x)f(x")dxdx' = </ i(x xdx) >0.
/m@‘/’“d’( >>f< ) > (o) =
Argue that in particular, polynomial kernels (2.67) satisfy Mercer’s conditions.

2.24 (co-Norm of Mercer Eigenfunctions ee) Prove that under the conditions of The-
orem 2.10, we have, up to sets of measure zero,

sup H,/,\]-q,z)jH < v/ lIKl|oo < 0. (2.100)
]' oo
Hint: note that ||k||o > k(x,x) up to sets of measures zero, and use the series expansion

given in Theorem 2.10. Show, moreover, that it is not generally the case that

sup [|%j{[e0 < 00. (2.101)
j

Hint: consider the case where X = N, pu({n}) := 27", and k(i, j) := d;;. Show that
1. Ti((a)) = (a27) for (a)) € Lo(X, ),
2. T satisfies ((a;), Ti(a;)) = 3;(aj277)* > 0 and is thus positive definite,

3. X =2 and ¢; = 2/ 2e; form an orthonormal eigenvector decomposition of Ty (here,
ej is the jth canonical unit vector in £), and

_nj/2 _ 12

Argue that the last statement shows that (2.101) is wrong and (2.100) is tight.1?

2.25 (Generalized Feature Maps eee) Via (2.38), Mercer kernels induce compact (in-
tegral) operators. Can you generalize the idea of defining a feature map associated with an

12. Thanks to S. Smale and I. Steinwart for this exercise.
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operator to more general bounded positive definite operators T? Hint: use the multiplica-
tion operator representation of T [467].

2.26 (Nystrom Approximation (cf. [603]) o) Consider the integral operator obtained
by substituting the distribution P underlying the data into (2.38), i.e.,

(Tof)(x) = /x K(x, ') f(x) dP(x). (2.102)
If the conditions of Mercer’s theorem are satisfied, then k can be diagonalized as
Nyc
kx,x') = 3 A0 (), (2.103)
=
where A; and v; satisfy the eigenvalue equation
[ K ) dP) = A ) (2.104)
X
and the orthonormality conditions
/x Yi(0);(x)dP(x) = d;;. (2.105)
Show that by replacing the integral by a summation over an iid sample X = {x1,...,Xy}

from P(x), one can recover the kernel PCA eigenvalue problem (Section 1.7). Hint: Start

by evaluating (2.104) for x' € X, to obtain m equations. Next, approximate the integral by

a sum over the points in X, replacing [y k(x,x")1p;(x) dP(x) by % Se1 k(x, x)(x).
Derive the orthogonality condition for the eigenvectors (¥ i(x,))u=1,...,m from (2.105).

2.27 (Lorentzian Feature Spaces ee) If a finite number of eigenvalues is negative, the
expansion in Theorem 2.10 is still valid. Show that in this case, k corresponds to a
Lorentzian symmetric bilinear form in a space with indefinite signature [467].

Discuss whether this causes problems for learning algorithms utilizing these kernels. In
particular, consider the cases of SV machines (Chapter 7) and Kernel PCA (Chapter 14).

2.28 (Symmetry of Reproducing Kernels o) Show that reproducing kernels (Defini-
tion 2.9) are symmetric. Hint: use (2.35) and exploit the symmetry of the dot product.

2.29 (Coordinate Representation in the RKHS ee) Write (-,-) as a dot product of

coordinate vectors by expressing the functions of the RKHS in the basis (v/ Xy ¥n)n=1,... Ny,
which is orthonormal with respect to {-,-), i.e.,

Ng¢
f(x) = E A/ )\rﬂ/)n(x)- (2106)
n=1

Obtain an expression for the coordinates v, using (2.47) and o, = <f, \/)\n1/1n> . Show
that J has the structure of a RKHS in the sense that for f and g given by (2.106), and

g(x) = E ﬁj\/;j1/’j(x)a (2.107)
1
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we have (o, B) = (f,g) . Show, moreover, that f(x) = (a, ®(x)) in H. In other words,
D(x) is the coordinate representation of the kernel as a function of one argument.

2.30 (Equivalence of Regularization Terms o) Using (2.36) and (2.41), prove that
|\w||?, where w = S, ;@ (x;), is the same no matter whether ® denotes the RKHS fea-
ture map (2.21) or the Mercer feature map (2.40).

2.31 (Approximate Inversion of Gram Matrices ee) Use the kernel PCA map (2.59)
to derive a method for approximately inverting a large Gram matrix.

2.32 (Effective Dimension of Feature Space o) Building on Section 2.2.7, arque that
for a finite data set, we are always effectively working in a finite-dimensional feature space.

2.33 (Translation of a Dot Product e) Prove (2.79).

2.34 (Example of a CPD Kernel ee) Arque that the hyperbolic tangent kernel (2.69) is
effectively conditionally positive definite, if the input values are suitably restricted, since
it can be approximated by k + b, where k is a polynomial kernel (2.67) and b € R. Discuss
how this explains that hyperbolic tangent kernels can be used for SVMs although, as
pointed out in number of works (e.g., [86], cf. the remark following (2.69)), they are not
positive definite.

2.35 (Polarization Identity ee) Prove the polarization identity, stating that for any
symmetric bilinear form (-,-) : X x X — R, we have, for all x,x" € X,

(x,x"y = 31 ((x+x,x+x) = (x—x',x—x")). (2.108)

Now consider the special case where (-,-) is a Euclidean dot product and (x — x',x — x')
is the squared Euclidean distance between x and x'. Discuss why the polarization identity
does not imply that the value of the dot product can be recovered from the distances alone.
What else does one need?

2.36 (Vector Space Representation of CPD Kernels eee) Specialize the vector space
representation of symmetric kernels (Proposition 2.25) to the case of cpd kernels. Can you
identify a subspace on which a cpd kernel is actually pd?

2.37 (Parzen Windows Classifiers in Feature Space ee) Assume that k is a positive
definite kernel. Compare the algorithm described in Section 1.2 with the one of (2.89). Con-
struct situations where the two algorithms give different results. Hint: consider datasets
where the class means coincide.

2.38 (Canonical Distortion Kernel coo) Can you define a kernel based on Baxter’s
canonical distortion metric [28]?



