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Further examples include kernels for string matching, as proposed by [585, 234,
23]. We shall describe these, and address the general problem of designing kernel
functions, in Chapter 13.
The next section will return to the connection between kernels and feature

spaces. Readers who are eager to move on to SV algorithms may want to skip
this section, which is somewhat more technical.

2.4 The Representation of Dissimilarities in Linear Spaces

2.4.1 Conditionally Positive Definite Kernels

We now proceed to a larger class of kernels than that of the positive definite ones.
This larger class is interesting in several regards. First, it will turn out that some
kernel algorithms work with this class, rather than only with positive definite
kernels. Second, its relationship to positive definite kernels is a rather interesting
one, and a number of connections between the two classes provide understanding
of kernels in general. Third, they are intimately related to a question which is
a variation on the central aspect of positive definite kernels: the latter can be
thought of as dot products in feature spaces; the former, on the other hand, can
be embedded as distance measures arising from norms in feature spaces.
The present section thus attempts to extend the utility of the kernel trick by

looking at the problem of which kernels can be used to compute distances in
feature spaces. The underlying mathematical results have been known for quite
a while [465]; some of them have already attracted interest in the kernel methods
community in various contexts [515, 234].
Clearly, the squared distance �Φ(x)�Φ(x�)�2 in the feature space associatedwith

a pd kernel k can be computed, using k(x� x�) � �Φ(x)�Φ(x�)�, as

�Φ(x)�Φ(x�)�2 � k(x� x)� k(x�� x�)� 2k(x� x�)� (2.78)

Positive definite kernels are, however, not the full story: there exists a larger class
of kernels that can be used as generalized distances, and the present section will
describe why and how [468].
Let us start by considering how a dot product and the corresponding distance

measure are affected by a translation of the data, x �� x� x0. Clearly, �x� x��2 is
translation invariant while �x� x�� is not. A short calculation shows that the effect
of the translation can be expressed in terms of ��� ��2 as

�(x� x0)� (x�� x0)� �
1
2
�
��x� x��2 � �x� x0�2 � �x0� x��2

�
� (2.79)

Note that this, just like �x� x��, is still a pd kernel: ∑i� j cic j
�
(xi � x0)� (xj � x0)

�
�

�∑i ci(xi � x0)�2 � 0 holds true for any ci. For any choice of x0 � �, we thus get a
similarity measure (2.79) associated with the dissimilarity measure �x� x��.
This naturally leads to the question of whether (2.79) might suggest a connection
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that also holds true in more general cases: what kind of nonlinear dissimilarity
measure do we have to substitute for ��� ��2 on the right hand side of (2.79), to
ensure that the left hand side becomes positive definite? To state the answer, we
first need to define the appropriate class of kernels.
The following definition differs from Definition 2.4 only in the additional con-

straint on the sum of the ci. Below, � is a shorthand for � or � ; the definitions are
the same in both cases.

Definition 2.20 (Conditionally Positive Definite Matrix) A symmetric m	 m ma-
trix K (m � 2) taking values in � and satisfying
m

∑
i� j�1

cic̄ jKi j � 0 for all ci � � � with
m

∑
i�1
ci � 0� (2.80)

is called conditionally positive definite (cpd).

Definition 2.21 (Conditionally Positive Definite Kernel) Let � be a nonempty set.
A function k :�	�� � which for all m� 2� x1� � � � � xm �� gives rise to a conditionally
positive definite Gram matrix is called a conditionally positive definite (cpd) kernel.

Note that symmetry is also required in the complex case. Due to the additional
constraint on the coefficients ci, it does not follow automatically anymore, as it
did in the case of complex positive definite matrices and kernels. In Chapter 4, we
will revisit cpd kernels. There, we will actually introduce cpd kernels of different
orders. The definition given in the current chapter covers the case of kernels which
are cpd of order 1.

Proposition 2.22 (Constructing PD Kernels from CPD Kernels [42]) Let x0 � �,
and let k be a symmetric kernel on �	�. ThenConnection PD

— CPD
k̃(x� x�) :�

1
2
(k(x� x�)� k(x� x0)� k(x0� x�)� k(x0� x0))

is positive definite if and only if k is conditionally positive definite.

The proof follows directly from the definitions and can be found in [42]. This
result does generalize (2.79): the negative squared distance kernel is indeed cpd,
since ∑i ci � 0 implies �∑i� j cic j�xi � xj�2 � �∑i ci∑ j c j�xj�2 � ∑ j c j∑i ci�xi�2 �
2∑i� j cic j

�
xi� xj

�
� 2∑i� j cic j

�
xi� xj

�
� 2�∑i cixi�2 � 0� In fact, this implies that all

kernels of the form

k(x� x�) � ��x� x��� � 0 
 � 
 2 (2.81)

are cpd (they are not pd),10 by application of the following result (note that the
case � � 0 is trivial):

10. Moreover, they are not cpd if � � 2 [42].
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Proposition 2.23 (Fractional Powers and Logs of CPD Kernels [42]) If k :�	��
(��� 0] is cpd, then so are �(�k)� (0 � � � 1) and � ln(1� k).

To state another class of cpd kernels that are not pd, note first that as a trivial
consequence of Definition 2.20, we know that (i) sums of cpd kernels are cpd, and
(ii) any constant b � � is a cpd kernel. Therefore, any kernel of the form k � b,
where k is cpd and b � � , is also cpd. In particular, since pd kernels are cpd, we
can take any pd kernel and offset it by b, and it will still be at least cpd. For further
examples of cpd kernels, cf. [42, 578, 205, 515].

2.4.2 Hilbert Space Representation of CPD Kernels

We now return to the main flow of the argument. Proposition 2.22 allows us to
construct the feature map for k from that of the pd kernel k̃. To this end, fix x0 � �
and define k̃ according to Proposition 2.22. Due to Proposition 2.22, k̃ is positive
definite. Therefore, we may employ the Hilbert space representationΦ : ��� of
k̃ (cf. (2.32)), satisfying �Φ(x)�Φ(x�)� � k̃(x� x�); hence,

�Φ(x)�Φ(x�)�2 � k̃(x� x)� k̃(x�� x�)� 2k̃(x� x�)� (2.82)

Substituting Proposition 2.22 yields

�Φ(x)�Φ(x�)�2 � �k(x� x�)�
1
2
�
k(x� x)� k(x�� x�)

�
� (2.83)

This implies the following result [465, 42].

Proposition 2.24 (Hilbert Space Representation of CPD Kernels) Let k be a real-Feature Map for
CPD Kernels valued CPD kernel on �, satisfying k(x� x) � 0 for all x � �. Then there exists a Hilbert

space� of real-valued functions on �, and a mapping Φ : ���, such that

�Φ(x)�Φ(x�)�2 � �k(x� x�)� (2.84)

If we drop the assumption k(x� x)� 0, the Hilbert space representation reads

�Φ(x)�Φ(x�)�2 � �k(x� x�)�
1
2
�
k(x� x)� k(x�� x�)

�
� (2.85)

It can be shown that if k(x� x)� 0 for all x � �, then

d(x� x�) :�
�
�k(x� x�) � �Φ(x)�Φ(x�)� (2.86)

is a semi-metric: clearly, it is nonnegative and symmetric; additionally, it satisfies
the triangle inequality, as can be seen by computing d(x� x�)� d(x�� x��) � �Φ(x)�
Φ(x�)�� �Φ(x�)�Φ(x��)� � �Φ(x)�Φ(x��)� � d(x� x��) [42].
It is a metric if k(x� x�) �� 0 for x �� x�. We thus see that we can rightly think of k

as the negative of a distance measure.
We next show how to represent general symmetric kernels (thus in particular

cpd kernels) as symmetric bilinear forms Q in feature spaces. This generalization
of the previously known feature space representation for pd kernels comes at a
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cost: Q will no longer be a dot product. For our purposes, we can get away with
this. The result will give us an intuitive understanding of Proposition 2.22: we
can then write k̃ as k̃(x� x�) :� Q(Φ(x)�Φ(x0)�Φ(x�)�Φ(x0)). Proposition 2.22 thus
essentially adds an origin in feature space which corresponds to the image Φ(x0)
of one point x0 under the feature map.

Proposition 2.25 (Vector Space Representation of Symmetric Kernels) Let k be aFeature Map for
General
Symmetric
Kernels

real-valued symmetric kernel on �. Then there exists a linear space � of real-valued
functions on �, endowed with a symmetric bilinear form Q(�� �), and a mapping Φ : ��
�, such that k(x� x�) � Q(Φ(x)�Φ(x�)).

Proof The proof is a direct modification of the pd case. We use themap (2.21) and
linearly complete the image as in (2.22). Define Q( f � g) :� ∑mi�1∑

m�

j�1 �i� jk(xi� x
�

j). To
see that it is well-defined, although it explicitly contains the expansion coefficients
(which need not be unique), note that Q( f � g) � ∑m

�

j�1 � j f (x
�

j), independent of the
�i. Similarly, for g, note that Q( f � g)� ∑i �ig(xi), hence it is independent of � j. The
last two equations also show that Q is bilinear; clearly, it is symmetric.

Note, moreover, that by definition of Q, k is a reproducing kernel for the fea-
ture space (which is not a Hilbert space): for all functions f (2.22), we have
Q(k(�� x)� f )� f (x); in particular, Q(k(�� x)� k(�� x�)) � k(x� x�)�
Rewriting k̃ as k̃(x� x�) :� Q(Φ(x)�Φ(x0)�Φ(x�)�Φ(x0)) suggests an immediate

generalization of Proposition 2.22: in practice, we might want to choose other
points as origins in feature space — points that do not have a pre-image x0 in
the input domain, such as the mean of a set of points (cf. [543]). This will be useful
when considering kernel PCA. It is only crucial that the behavior of our reference
point under translation is identical to that of individual points. This is taken care
of by the constraint on the sum of the ci in the following proposition.

Proposition 2.26 (Exercise 2.23 in [42]) Let K be a symmetric matrix, e � �m be theMatrix Centering
vector of all ones, 1 the m	m identity matrix, and let c � � m satisfy e�c � 1. Then

K̃ :� (1� ec�)K(1� ce�) (2.87)

is positive definite if and only if K is conditionally positive definite.11

Proof “�”: suppose K̃ is positive definite. Thus for any a � �
m which satisfies

a�e� e�a� 0, we have 0
 a�K̃a� a�Ka�a�ec�Kce�a�a�Kce�a�a�ec�Ka� a�Ka.
This means that 0 
 a�Ka, proving that K is conditionally positive definite.
“��”: suppose K is conditionally positive definite. This means that we have to

show that a�K̃a � 0 for all a � �
m . We have

a�K̃a � a�(1� ec�)K(1� ce�)a � s�Ks for s � (1� ce�)a� (2.88)

11. c� is the vector obtained by transposing and taking the complex conjugate of c.
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All we need to show is e�s � 0, since then we can use the fact that K is cpd to
obtain s�Ks � 0. This can be seen as follows e�s � e�(1� ce�)a � (e� � (e�c)e�)a �
(e� � e�)a � 0.

This result directly implies a corresponding generalization of Proposition 2.22:

Proposition 2.27 (Adding a General Origin) Let k be a symmetric kernel, x1� � � � � xm �Kernel Centering
�, and let ci � � satisfy ∑mi�1 ci � 1. Then

k̃(x� x�) :�
1
2

�
k(x� x�)�

m

∑
i�1
cik(x� xi)�

m

∑
i�1
cik(xi� x�)�

m

∑
i� j�1

cic jk(xi� xj)
�

is positive definite if and only if k is conditionally positive definite.

Proof Consider a set of m� � � points x�1� � � � � x
�

m� � �, and let K be the (m�m�)	
(m � m�) Gram matrix based on x1� � � � � xm� x�1� � � � � x

�

m� . Apply Proposition 2.26
using cm�1 � � � � � cm�m� � 0.

The above results show that conditionally positive definite kernels are a naturalApplication to
SVMs choice whenever we are dealing with a translation invariant problem, such as the

SVM: maximization of the margin of separation between two classes of data is
independent of the position of the origin. Seen in this light, it is not surprising that
the structure of the dual optimization problem (cf. [561]) allows cpd kernels: as
noted in [515, 507], the constraint ∑mi�1 �i yi � 0 projects out the same subspace as
(2.80) in the definition of conditionally positive definite matrices.
Another example of a kernel algorithm that works with conditionally positiveApplication to

Kernel PCA definite kernels is Kernel PCA (Chapter 14), where the data are centered, thus
removing the dependence on the origin in feature space. Formally, this follows
from Proposition 2.26 for ci � 1�m.
Let us consider another example. One of the simplest distance-based classifica-Application to

Parzen Windows
Classifiers

tion algorithms proceeds as follows. Given m� points labelled with �1, m� points
labelled with �1, and a mapped test point Φ(x), we compute the mean squared
distances between the latter and the two classes, and assign it to the one for which
this mean is smaller;

y � sgn

�
1
m�

∑
yi��1

�Φ(x)�Φ(xi)�2 �
1
m�

∑
yi�1

�Φ(x)�Φ(xi)�2
	
� (2.89)

We use the distance kernel trick (Proposition 2.24) to express the decision function
as a kernel expansion in the input domain: a short calculation shows that

y � sgn

�
1
m�

∑
yi�1

k(x� xi)�
1
m�

∑
yi��1

k(x� xi)� b

	
� (2.90)

with the constant offset

b �
1
2m�

∑
yi��1

k(xi� xi)�
1
2m�

∑
yi�1

k(xi� xi)� (2.91)



2.4 The Representation of Dissimilarities in Linear Spaces 53

Note that for some cpd kernels, such as (2.81), k(xi� xi) is always 0, and thus b � 0.
For others, such as the commonly used Gaussian kernel, k(xi� xi) is a nonzero con-
stant, in which case b vanishes provided thatm� �m�. For normalized Gaussians,
the resulting decision boundary can be interpreted as the Bayes decision based on
two Parzen window density estimates of the classes; for general cpd kernels, the
analogy is merely a formal one; that is, the decision functions take the same form.
Many properties of positive definite kernels carry over to the more general caseProperties of

CPD Kernels of conditionally positive definite kernels, such as Proposition 13.1.
Using Proposition 2.22, one can prove an interesting connection between the

two classes of kernels:

Proposition 2.28 (Connection PD— CPD [465]) A kernel k is conditionally positive
definite if and only if exp(tk) is positive definite for all t � 0.

Positive definite kernels of the form exp(tk) (t � 0) have the interesting property
that their nth root (n � � ) is again a positive definite kernel. Such kernels are
called infinitely divisible. One can show that, disregarding some technicalities, the
logarithm of an infinitely divisible positive definite kernel mapping into �

�

0 is a
conditionally positive definite kernel.

2.4.3 Higher Order CPD Kernels

For the sake of completeness, we now present somematerial which is of interest to
one section later in the book (Section 4.8), but not central for the present chapter.
We follow [341, 204].

Definition 2.29 (Conditionally Positive Definite Functions of Order q) A contin-
uous function h, defined on [0��), is called conditionally positive definite (cpd) of order q
on �N if for any distinct points x1� � � � � xm � � N , the quadratic form,
m

∑
i� j�1

�i� jh(�xi � xj�2)� (2.92)

is nonnegative, provided that the scalars �1� � � � � �m satisfy ∑mi�1 �i p(xi) � 0, for all
polynomials p(�) on �

N of degree lower than q.

Let ΠN
q denote the space of polynomials of degree lower than q on �

N . By
definition, every cpd function h of order q generates a positive definite kernel for
SV expansions in the space of functions orthogonal to ΠN

q , by setting k(x� x
�) :�

h(�x� x��2).
There exists also an analogue to the positive definiteness of the integral operator

in the conditions of Mercer’s theorem. In [157, 341] it is shown that for cpd
functions h of order q, we have�
h(�x� x��2) f (x) f (x�)dxdx� � 0� (2.93)

provided that the projection of f onto ΠN
q is zero.
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Figure 2.4 Conditionally positive definite functions, as described in Table 2.1. Where
applicable, we set the free parameter c to 1; � is set to 2. Note that cpd kernels need not
be positive anywhere (e.g., the Multiquadric kernel).

Table 2.1 Examples of Conditionally Positive Definite Kernels. The fact that the exponen-
tial kernel is pd (i.e., cpd of order 0) follows from (2.81) and Proposition 2.28.

Kernel Order

e�c�x�x
��� , 0 � � � 2 0 Exponential
1�

�x� x��2 � c2
0 Inverse Multiquadric

�
�
�x� x��2 � c2 1 Multiquadric

�x� x��2n ln�x� x�� n Thin Plate Spline

Definition 2.30 (Completely Monotonic Functions) A function h(x) is called com-
pletely monotonic of order q if

(�1)n
dn

dxn
h(x)� 0 for all x � [0��) and n � q� (2.94)

It can be shown [464, 465, 360] that a function h(x2) is conditionally positive
definite if and only if h(x) is completely monotonic of the same order. This gives a
(sometimes simpler) criterion for checking whether a function is cpd or not.
If we use cpd kernels in learning algorithms, we must ensure orthogonality of

the estimate with respect to ΠN
q . This is usually done via constraints ∑

m
i�1 �i p(xi)�

0 for all polynomials p(�) on �N of degree lower than q (see Section 4.8).



2.5 Summary 55

2.5 Summary

The crucial ingredient of SVMs and other kernel methods is the so-called kernel
trick (see (2.7) and Remark 2.8), which permits the computation of dot products in
high-dimensional feature spaces, using simple functions defined on pairs of input
patterns. This trick allows the formulation of nonlinear variants of any algorithm
that can be cast in terms of dot products, SVMs being but the most prominent ex-
ample. The mathematical result underlying the kernel trick is almost a century old
[359]. Nevertheless, it was only much later that it was exploited by the machine
learning community for the analysis [4] and construction of algorithms [62], and
that it was described as a general method for constructing nonlinear generaliza-
tions of dot product algorithms [480].
The present chapter has reviewed the mathematical theory of kernels. We

started with the class of polynomial kernels, which can be motivated as com-
puting a combinatorially large number of monomial features rather efficiently.
This led to the general question of which kernel can be used, or: which kernel
can be represented as a dot product in a linear feature space. We defined this class
and discussed some of its properties.We described several ways how, given such a
kernel, one can construct a representation in a feature space. Themost well-known
representation employs Mercer’s theorem, and represents the feature space as an
�2 space defined in terms of the eigenfunctions of an integral operator associated
with the kernel. An alternative representation uses elements of the theory of re-
producing kernel Hilbert spaces, and yields additional insights, representing the
linear space as a space of functions written as kernel expansions. We gave an in-
depth discussion of the kernel trick in its general form, including the case where
we are interested in dissimilarities rather than similarities; that is, when we want
to come up with nonlinear generalizations of distance-based algorithms rather
than dot-product-based algorithms.
In both cases, the underlying philosophy is the same: we are trying to express a

complex nonlinear algorithm in terms of simple geometrical concepts, and we are
then dealing with it in a linear space. This linear space may not always be readily
available; in some cases, it may even be hard to construct explicitly. Nevertheless,
for the sake of design and analysis of the algorithms, it is sufficient to know that
the linear space exists, empowering us to use the full potential of geometry, linear
algebra and functional analysis.

2.6 Problems

2.1 (Monomial Features in �
2 �) Verify the second equality in (2.9).

2.2 (Multiplicity of Monomial Features in �
N [515] ��) Consider the monomial ker-

nel k(x� x�) � �x� x��d (where x� x� � �N), generating monomial features of order d. Prove


