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determined by the m conditions (2.63).
For the converse, assume an arbitrary � � �

m , and compute

m

∑
i� j�1

�i� jKi j �

�
m
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i�1

�iΦ(xi)�
m
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� jΦ(xj)

�
�

�����
m

∑
i�1

�iΦ(xi)

�����
2

� 0� (2.64)

In particular, this result implies that given data x1� � � � � xm, and a kernel k which
gives rise to a positive definite matrix K, it is always possible to construct a feature
space � of dimension at most m that we are implicitly working in when using
kernels (cf. Problem 2.32 and Section 2.2.6).
If we perform an algorithm which requires k to correspond to a dot product in

some other space (as for instance the SV algorithms described in this book), it is
possible that even though k is not positive definite in general, it still gives rise to
a positive definite Grammatrix K with respect to the training data at hand. In this
case, Proposition 2.16 tells us that nothing will go wrong during training when we
work with these data. Moreover, if k leads to a matrix with some small negative
eigenvalues, we can add a small multiple of some strictly positive definite kernel
k� (such as the identity k�(xi� xj) � Æi j) to obtain a positive definite matrix. To see
this, suppose that �min � 0 is the minimal eigenvalue of k’s Grammatrix. Note that
being strictly positive definite, the Gram matrix K� of k� satisfies

min
����1

���K�
�� � ��min � 0� (2.65)

where ��min denotes its minimal eigenvalue, and the first inequality follows from
Rayleigh’s principle (B.57). Therefore, provided that �min� ���min � 0, we have
��� (K� �K�)�� � ���K��� � ���K�

�� � ���2 ��min� ���min
� � 0 (2.66)

for all � � �
m , rendering (K� �K�) positive definite.

2.3 Examples and Properties of Kernels

For the following examples, let us assume that � � �
N . Besides homogeneous

polynomial kernels (cf. Proposition 2.1),Polynomial

k(x� x�) � �x� x��d � (2.67)

Boser, Guyon, and Vapnik [62, 223, 561] suggest the usage of Gaussian radial basis
function kernels [26, 4],Gaussian

k(x� x�) � exp
�
��x� x

��2
2 �2

�
� (2.68)

where � � 0, and sigmoid kernels,Sigmoid

k(x� x�) � tanh(� �x� x��� 	)� (2.69)
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where � � 0 and 	 � 0. By applying Theorem 13.4 below, one can check that the
latter kernel is not actually positive definite (see Section 4.6 and [85, 511] and the
discussion in Example 4.25). Curiously, it has nevertheless successfully been used
in practice. The reasons for this are discussed in [467].
Other useful kernels include the inhomogeneous polynomial,Inhomogeneous

Polynomial
k(x� x�) �

��x� x��� c�d � (2.70)

(d � � � c � 0) and the Bn-spline kernel [501, 572] (IX denoting the indicator (or
characteristic) function on the set X, and� the convolution operation, ( f � g)(x) :��
f (x�)g(x�� x)dx�),Bn-Spline of Odd

Order
k(x� x�) � B2p�1(�x� x��) with Bn :�

n�
i�1

I[� 1
2 �
1
2 ]� (2.71)

The kernel computes B-splines of order 2p� 1 (p � � ), defined by the (2p� 1)-fold
convolution of the unit interval [�1
2� 1
2]. See Section 4.4.1 for further details
and a regularization theoretic analysis of this kernel.
Note that all these kernels have the convenient property of unitary invariance,Invariance

of Kernels k(x� x�)� k(Ux�Ux�) ifU�
�U�1, for instance ifU is a rotation. If we consider com-

plex numbers, then we have to use the adjoint U� :� U
�
instead of the transpose.

Radial basis function (RBF) kernels are kernels that can be written in the formRBF Kernels

k(x� x�) � f (d(x� x�))� (2.72)

where d is a metric on �, and f is a function on �
�

0 . Examples thereof are the
Gaussians and B-splines mentioned above. Usually, the metric arises from the
dot product; d(x� x�) � �x� x�� ���x� x�� x� x��. In this case, RBF kernels are
unitary invariant, too. In addition, they are translation invariant; in other words,
k(x� x�) � k(x� x0� x�� x0) for all x0 � �.
In some cases, invariance properties alone can distinguish particular kernels: in

Section 2.1, we explained how using polynomial kernels �x� x��d corresponds to
mapping into a feature space whose dimensions are spanned by all possible dth
order monomials in input coordinates. The different dimensions are scaled with
the square root of the number of ordered products of the respective d entries (e.g.,	
2 in (2.13)). These scaling factors precisely ensure invariance under the group

of all orthogonal transformations (rotations and mirroring operations). In many
cases, this is a desirable property: it ensures that the results of a learning procedure
do not depend onwhich orthonormal coordinate system (with fixed origin) we use
for representing our input data.

Proposition 2.17 (Invariance of Polynomial Kernels [480]) Up to a scaling factor,
the kernel k(x� x�)� �x� x��d is the only kernel inducing a map into a space of all monomi-
als of degree d which is invariant under orthogonal transformations of � N .

Some interesting additional structure exists in the case of a Gaussian RBF kernel kProperties of
RBF Kernels (2.68). As k(x� x)� 1 for all x � �, each mapped example has unit length, �Φ(x)��
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1 (Problem 2.18 shows how to achieve this for general kernels). Moreover, as
k(x� x�)� 0 for all x� x� ��, all points lie inside the same orthant in feature space. To
see this, recall that for unit length vectors, the dot product (1.3) equals the cosine
of the enclosed angle. We obtain

cos(�(Φ(x)�Φ(x�))) � �Φ(x)�Φ(x�)� � k(x� x�) � 0� (2.73)

which amounts to saying that the enclosed angle between any two mapped exam-
ples is smaller than �
2.
The above seems to indicate that in the Gaussian case, the mapped data lie in

a fairly restricted area of feature space. However, in another sense, they occupy a
space which is as large as possible:

Theorem 2.18 (Full Rank of Gaussian RBF GramMatrices [360]) Suppose that
x1� � � � � xm � � are distinct points, and � 
� 0. The matrix K given by

Ki j :� exp

	
��xi � xj�

2

2�2



(2.74)

has full rank.

In other words, the points Φ(x1)� � � � �Φ(xm) are linearly independent (provided
no two xi are the same). They span an m-dimensional subspace of �. Therefore
a Gaussian kernel defined on a domain of infinite cardinality, with no a priori
restriction on the number of training examples, produces a feature space of infinite
dimension. Nevertheless, an analysis of the shape of the mapped data in featureInfinite-

Dimensional
Feature Space

space shows that capacity is distributed in a way that ensures smooth and simple
estimates whenever possible (see Section 12.4).
The examples given above all apply to the case of vectorial data. Let us next give

an example where � is not a vector space [42].

Proposition 2.19 (Similarity of Probabilistic Events) If (����P) is a probability
space with �-algebra � and probability measure P, then

k(A� B)� P(A � B)� P(A)P(B) (2.75)

is a positive definite kernel on �� �.
Proof To see this, we define a feature map

Φ : A 
� (IA � P(A)) � (2.76)

where IA is the characteristic function on A. On the feature space, which consists
of functions on � taking values in [�1� 1], we use the dot product

� f � g� :�
�
�

f � g dP� (2.77)

The result follows by noticing �IA� IB� � P(A� B) and �IA�P(B)� � P(A)P(B).
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Further examples include kernels for string matching, as proposed by [585, 234,
23]. We shall describe these, and address the general problem of designing kernel
functions, in Chapter 13.
The next section will return to the connection between kernels and feature

spaces. Readers who are eager to move on to SV algorithms may want to skip
this section, which is somewhat more technical.

2.4 The Representation of Dissimilarities in Linear Spaces

2.4.1 Conditionally Positive Definite Kernels

We now proceed to a larger class of kernels than that of the positive definite ones.
This larger class is interesting in several regards. First, it will turn out that some
kernel algorithms work with this class, rather than only with positive definite
kernels. Second, its relationship to positive definite kernels is a rather interesting
one, and a number of connections between the two classes provide understanding
of kernels in general. Third, they are intimately related to a question which is
a variation on the central aspect of positive definite kernels: the latter can be
thought of as dot products in feature spaces; the former, on the other hand, can
be embedded as distance measures arising from norms in feature spaces.
The present section thus attempts to extend the utility of the kernel trick by

looking at the problem of which kernels can be used to compute distances in
feature spaces. The underlying mathematical results have been known for quite
a while [465]; some of them have already attracted interest in the kernel methods
community in various contexts [515, 234].
Clearly, the squared distance �Φ(x)�Φ(x�)�2 in the feature space associatedwith

a pd kernel k can be computed, using k(x� x�) � �Φ(x)�Φ(x�)�, as
�Φ(x)�Φ(x�)�2 � k(x� x)� k(x�� x�)� 2k(x� x�)� (2.78)

Positive definite kernels are, however, not the full story: there exists a larger class
of kernels that can be used as generalized distances, and the present section will
describe why and how [468].
Let us start by considering how a dot product and the corresponding distance

measure are affected by a translation of the data, x 
� x� x0. Clearly, �x� x��2 is
translation invariant while �x� x�� is not. A short calculation shows that the effect
of the translation can be expressed in terms of ��� ��2 as

�(x� x0)� (x�� x0)� � 1
2
���x� x��2 � �x� x0�2 � �x0� x��2� � (2.79)

Note that this, just like �x� x��, is still a pd kernel: ∑i� j cic j
�
(xi � x0)� (xj � x0)

�
�

�∑i ci(xi � x0)�2 � 0 holds true for any ci. For any choice of x0 � �, we thus get a
similarity measure (2.79) associated with the dissimilarity measure �x� x��.
This naturally leads to the question of whether (2.79) might suggest a connection


