
26 Kernels

2.3 Examples and
Properties of Kernels

2.4 Conditionally Positive
Definite Kernels

2.2.4, 2.2.5 Mercer
Representation

2.2.2, 2.2.3 RKHS
Representation

Definite Kernels
2.2.1 Positive2.1 Polynomial

Kernels

2.2.6, 2.2.7 Data
Dependent
Representation

2.1 Product Features

In this section, we think of � as a subset of the vector space � N , (N � � ), endowed
with the canonical dot product (1.3).
Suppose we are given patterns x � � where most information is contained in

the dth order products (so-called monomials) of entries [x] j of x,Monomial
Features

[x] j1 � [x] j2 � � � [x] jd � (2.3)

where j1� � � � � jd � �1� � � � �N�. Often, these monomials are referred to as product
features. These features form the basis of many practical algorithms; indeed, there
is a whole field of pattern recognition research studying polynomial classifiers [484],
which is based on first extracting product features and then applying learning
algorithms to these features. In other words, the patterns are preprocessed by
mapping into the feature space � of all products of d entries. This has proven
quite effective in visual pattern recognition tasks, for instance. To understand the
rationale for doing this, note that visual patterns are usually represented as vectors
whose entries are the pixel intensities. Taking products of entries of these vectors
then corresponds to taking products of pixel intensities, and is thus akin to taking
logical “and” operations on the pixels. Roughly speaking, this corresponds to the
intuition that, for instance, a handwritten “8” constitutes an eight if there is a top
circle and a bottom circle. With just one of the two circles, it is not half an “8,” but
rather a “0.” Nonlinearities of this type are crucial for achieving high accuracies in
pattern recognition tasks.
Let us take a look at this feature map in the simple example of two-dimensional

patterns, for which � � �
2 . In this case, we can collect all monomial feature

extractors of degree 2 in the nonlinear map

Φ : � 2 �� � �
3
� (2.4)

([x]1� [x]2) �� ([x]21� [x]
2
2� [x]1[x]2)� (2.5)

This approach works fine for small toy examples, but it fails for realistically sized



2.1 Product Features 27

problems: for N-dimensional input patterns, there exist

N� �
�
d� N� 1

d

�
�
(d� N� 1)!
d!(N� 1)! (2.6)

different monomials (2.3) of degree d, comprising a feature space� of dimension
N�. For instance, 16� 16 pixel input images and a monomial degree d � 5 thus
yield a dimension of almost 1010.
In certain cases described below, however, there exists a way of computing dot

products in these high-dimensional feature spaces without explicitly mapping into
the spaces, by means of kernels nonlinear in the input space �

N . Thus, if the
subsequent processing can be carried out using dot products exclusively, we are
able to deal with the high dimension.
We now describe how dot products in polynomial feature spaces can be com-

puted efficiently, followed by a section in which we discuss more general feature
spaces. In order to compute dot products of the form 	Φ(x)�Φ(x�)
, we employ
kernel representations of the formKernel

k(x� x�) � 	Φ(x)�Φ(x�)
 � (2.7)

which allow us to compute the value of the dot product in � without having to
explicitly compute the map Φ.
What does k look like in the case of polynomial features? We start by giving an

example for N � d � 2, as considered above [561]. For the map

Φ : ([x]1� [x]2) �� ([x]21� [x]
2
2� [x]1[x]2� [x]2[x]1)� (2.8)

(note that for now, we have considered [x]1[x]2 and [x]2[x]1 as separate features;
thus we are looking at orderedmonomials) dot products in� take the form

	Φ(x)�Φ(x�)
 � [x]21[x�]21 � [x]
2
2[x

�]22 � 2[x]1[x]2[x
�]1[x�]2 � 	x� x�
2 � (2.9)

In other words, the desired kernel k is simply the square of the dot product in
input space. The same works for arbitrary N� d � � [62]: as a straightforward
generalization of a result proved in the context of polynomial approximation [412,
Lemma 2.1], we have:

Proposition 2.1 Define Cd to map x � �
N to the vector Cd(x) whose entries are all

possible dth degree ordered products of the entries of x. Then the corresponding kernel
computing the dot product of vectors mapped by Cd is

k(x� x�) � 	Cd(x)�Cd(x�)
 � 	x� x�
d � (2.10)
Polynomial
Kernel

Proof We directly compute

	Cd(x)�Cd(x�)
 �
N

∑
j1�1

� � �

N

∑
jd�1
[x] j1 � � � � � [x] jd � [x�] j1 � � � � � [x�] jd (2.11)



28 Kernels

�

N

∑
j1�1
[x] j1 � [x�] j1 � � �

N

∑
jd�1
[x] jd � [x�] jd �

�
N

∑
j�1
[x] j � [x�] j

�d
� 	x� x�
d �

Note that we used the symbol Cd for the feature map. The reason for this is that we
would like to reserve Φd for the corresponding map computing unordered product
features. Let us construct such a map Φd, yielding the same value of the dot
product. To this end, we have to compensate for the multiple occurrence of certain
monomials in Cd by scaling the respective entries of Φd with the square roots of
their numbers of occurrence. Then, by this construction of Φd, and (2.10),

	Φd(x)�Φd(x�)
 � 	Cd(x)�Cd(x�)
 � 	x� x�
d � (2.12)

For instance, if n of the ji in (2.3) are equal, and the remaining ones are different,
then the coefficient in the corresponding component ofΦd is

�
(d� n� 1)!. For the

general case, see Problem 2.2. For Φ2, this simply means that [561]

Φ2(x) � ([x]21� [x]
2
2�
�
2 [x]1[x]2)� (2.13)

The above reasoning illustrates an important point pertaining to the construction
of feature spaces associated with kernel functions. Although they map into dif-
ferent feature spaces, Φd and Cd are both valid instantiations of feature maps for
k(x� x�) � 	x� x�
d.
To illustrate how monomial feature kernels can significantly simplify pattern

recognition tasks, let us consider a simple toy example.

Example 2.2 (Monomial Features in 2-D Pattern Recognition) In the example of
Figure 2.1, a non-separable problem is reduced to the construction of a separating hy-Toy Example
perplane by preprocessing the input data with Φ2. As we shall see in later chapters, this
has advantages both from the computational point of view (there exist efficient algo-
rithms for computing the hyperplane) and from the statistical point of view (there exist
guarantees for how well the hyperplane will generalize to unseen test points).

In more realistic cases, e.g., if x represents an image with the entries being pixel
values, polynomial kernels 	x� x�
d enable us to work in the space spanned by
products of any d pixel values — provided that we are able to do our work solely
in terms of dot products, without any explicit usage of a mapped pattern Φd(x).
Using kernels of the form (2.10), we can take higher-order statistics into account,
without the combinatorial explosion (2.6) of time and memory complexity which
accompanies even moderately high N and d.
To conclude this section, note that it is possible to modify (2.10) such that it maps

into the space of all monomials up to degree d, by defining k(x� x�) � (	x� x�
� 1)d
(Problem 2.17). Moreover, in practice, it is often useful to multiply the kernel by a
scaling factor c to ensure that its numeric range is within some bounded interval,
say [�1� 1]. The value of c will depend on the dimension and range of the data.



2.2 The Representation of Similarities in Linear Spaces 29

❍

❍

❍

❍

❍

❍

❍

❍

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕✕

✕

✕

✕

✕

✕

✕

✕

✕

x1

x2

❍
❍

❍
❍

❍

❍

❍

❍

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

z1

z2

✕

z3

Figure 2.1 Toy example of a binary classification problem mapped into feature space. We
assume that the true decision boundary is an ellipse in input space (left panel). The task
of the learning process is to estimate this boundary based on empirical data consisting of
training points in both classes (crosses and circles, respectively). Whenmapped into feature
space via the nonlinear map Φ2(x) � (z1� z2� z3) � ([x]21� [x]

2
2�
�
2 [x]1[x]2) (right panel), the

ellipse becomes a hyperplane (in the present simple case, it is parallel to the z3 axis, hence
all points are plotted in the (z1� z2) plane). This is due to the fact that ellipses can be written
as linear equations in the entries of (z1� z2� z3). Therefore, in feature space, the problem
reduces to that of estimating a hyperplane from the mapped data points. Note that via the
polynomial kernel (see (2.12) and (2.13)), the dot product in the three-dimensional space
can be computed without computing Φ2. Later in the book, we shall describe algorithms
for constructing hyperplanes which are based on dot products (Chapter 7).

2.2 The Representation of Similarities in Linear Spaces

In what follows, we will look at things the other way round, and start with the
kernel rather than with the feature map. Given some kernel, can we construct a
feature space such that the kernel computes the dot product in that feature space;
that is, such that (2.2) holds? This question has been brought to the attention
of the machine learning community in a variety of contexts, especially during
recent years [4, 152, 62, 561, 480]. In functional analysis, the same problem has
been studied under the heading of Hilbert space representations of kernels. A good
monograph on the theory of kernels is the book of Berg, Christensen, and Ressel
[42]; indeed, a large part of the material in the present chapter is based on this
work. We do not aim to be fully rigorous; instead, we try to provide insight into
the basic ideas. As a rule, all the results that we state without proof can be found
in [42]. Other standard references include [16, 455].
There is one more aspect in which this section differs from the previous one:

the latter dealt with vectorial data, and the domain � was assumed to be a subset
of �N . By contrast, the results in the current section hold for data drawn from
domains which need no structure, other than their being nonempty sets. This
generalizes kernel learning algorithms to a large number of situations where a
vectorial representation is not readily available, and where one directly works


