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Figure 1.9 Architecture of SVMs and related kernel methods. The input x and the expan-
sion patterns (SVs) xi (we assume that we are dealing with handwritten digits) are nonlin-
early mapped (by Φ) into a feature space � where dot products are computed. Through
the use of the kernel k, these two layers are in practice computed in one step. The results
are linearly combined using weights �i , found by solving a quadratic program (in pattern
recognition, �i � yi�i ; in regression estimation, �i � �

�

i � �i) or an eigenvalue problem
(Kernel PCA). The linear combination is fed into the function � (in pattern recognition,
�(x) � sgn (x� b); in regression estimation, �(x) � x� b; in Kernel PCA, �(x) � x).

1.8 Empirical Results and Implementations

Having described the basics of SVMs, we now summarize some empirical find-
ings. By the use of kernels, the optimal margin classifier was turned into a high-
performance classifier. Surprisingly, it was observed that the polynomial kernelExamples of
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and the sigmoid

k(x� x�) � tanh
�
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with suitable choices of d � � and ����Θ � � (here, � � �
N ), empirically led to

SV classifiers with very similar accuracies and SV sets (Section 7.8.2). In this sense,
the SV set seems to characterize (or compress) the given task in a manner which
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to some extent is independent of the type of kernel (that is, the type of classifier)
used, provided the kernel parameters are well adjusted.
Initial work at AT&T Bell Labs focused on OCR (optical character recognition),Applications

a problem where the two main issues are classification accuracy and classification
speed. Consequently, some effort went into the improvement of SVMs on these
issues, leading to the Virtual SV method for incorporating prior knowledge about
transformation invariances by transforming SVs (Chapter 7), and the Reduced Set
method (Chapter 18) for speeding up classification. Using these procedures, SVMs
soon became competitive with the best available classifiers on OCR and other
object recognition tasks [87, 57, 419, 438, 134], and later even achieved the world
record on the main handwritten digit benchmark dataset [134].
An initial weakness of SVMs, less apparent in OCR applications which areImplementation

characterized by low noise levels, was that the size of the quadratic programming
problem (Chapter 10) scaled with the number of support vectors. This was due to
the fact that in (1.36), the quadratic part contained at least all SVs — the common
practice was to extract the SVs by going through the training data in chunks
while regularly testing for the possibility that patterns initially not identified as
SVs become SVs at a later stage. This procedure is referred to as chunking; note
that without chunking, the size of the matrix in the quadratic part of the objective
function would be m�m, where m is the number of all training examples.
What happens if we have a high-noise problem? In this case, many of the

slack variables �i become nonzero, and all the corresponding examples become
SVs. For this case, decomposition algorithms were proposed [398, 409], based
on the observation that not only can we leave out the non-SV examples (the xi
with �i � 0) from the current chunk, but also some of the SVs, especially those
that hit the upper boundary (�i � C). The chunks are usually dealt with using
quadratic optimizers. Among the optimizers used for SVMs are LOQO [555],
MINOS [380], and variants of conjugate gradient descent, such as the optimizers of
Bottou [459] and Burges [85]. Several public domain SV packages and optimizers
are listed on the web page http://www.kernel-machines.org. For more details on
implementations, see Chapter 10.
Once the SV algorithm had been generalized to regression, researchers started

applying it to various problems of estimating real-valued functions. Very good
results were obtained on the Boston housing benchmark [529], and on problems of
times series prediction (see [376, 371, 351]). Moreover, the SV method was applied
to the solution of inverse function estimation problems ([572]; cf. [563, 589]). For
overviews, the interested reader is referred to [85, 472, 504, 125].


