
1.7 Kernel Principal Component Analysis 19

gous manner to the case of pattern recognition. Introducing Lagrange multipliers,
one arrives at the following optimization problem (for C� � � 0 chosen a priori):

maximize
������m

W(����) � ��
m

∑
i�1
(��

i � �i)�
m

∑
i�1
(��

i ��i)yi

�
1
2

m

∑
i� j�1

(��

i � �i)(��

j �� j)k(xi� xj)
(1.51)

subject to 0 � �i� �
�

i � C for all i � 1� � � � �m� and
m

∑
i�1
(�i � ��

i) � 0� (1.52)

The regression estimate takes the formRegression
Function

f (x)�
m

∑
i�1
(��

i ��i)k(xi� x)� b� (1.53)

where b is computed using the fact that (1.48) becomes an equality with �i � 0 if
0 � �i � C, and (1.49) becomes an equality with ��i � 0 if 0 � ��

i � C (for details,
see Chapter 9). The solution thus looks quite similar to the pattern recognition case
(cf. (1.35) and Figure 1.9).
A number of extensions of this algorithm are possible. From an abstract point of

view, we just need some target function which depends on (w� �) (cf. (1.47)). There
are multiple degrees of freedom for constructing it, including some freedom how
to penalize, or regularize. For instance, more general loss functions can be used for
�, leading to problems that can still be solved efficiently ([512, 515], cf. Chapter 9).
Moreover, norms other than the 2-norm ��� can be used to regularize the solution
(see Sections 4.9 and 9.4).
Finally, the algorithm can be modified such that � need not be specified a priori.

Instead, one specifies an upper bound 0 � � � 1 on the fraction of points allowed
to lie outside the tube (asymptotically, the number of SVs) and the corresponding �
is computed automatically. This is achieved by using as primal objective function�-SV Regression

1
2
�w�2 �C

�
�m��

m

∑
i�1

�yi � f (xi)��

�
(1.54)

instead of (1.46), and treating � � 0 as a parameter over which we minimize. For
more detail, cf. Section 9.3.

1.7 Kernel Principal Component Analysis

The kernel method for computing dot products in feature spaces is not restricted
to SVMs. Indeed, it has been pointed out that it can be used to develop nonlinear
generalizations of any algorithm that can be cast in terms of dot products, such as
principal component analysis (PCA) [480].
Principal component analysis is perhaps the most common feature extraction

algorithm; for details, see Chapter 14. The term feature extraction commonly refers

20 A Tutorial Introduction

to procedures for extracting (real) numbers from patterns which in some sense
represent the crucial information contained in these patterns.
PCA in feature space leads to an algorithm called kernel PCA. By solving an

eigenvalue problem, the algorithm computes nonlinear feature extraction func-
tions

fn(x) �
m

∑
i�1

�ni k(xi� x)� (1.55)

where, up to a normalizing constant, the �ni are the components of the nth eigen-
vector of the kernel matrix Kij :� (k(xi� xj)).
In a nutshell, this can be understood as follows. To do PCA in �, we wish to

find eigenvectors v and eigenvalues � of the so-called covariance matrix C in the
feature space, where

C :�
1
m

m

∑
i�1

Φ(xi)Φ(xi)�� (1.56)

Here, Φ(xi)� denotes the transpose of Φ(xi) (see Section B.2.1). In the case when
� is very high dimensional, the computational costs of doing this directly are
prohibitive. Fortunately, one can show that all solutions to

Cv � �v (1.57)

with � �� 0 must lie in the span of Φ-images of the training data. Thus, we may
expand the solution v as

v �
m

∑
i�1

�iΦ(xi)� (1.58)

thereby reducing the problem to that of finding the �i. It turns out that this leads
to a dual eigenvalue problem for the expansion coefficients,Kernel PCA

Eigenvalue
Problem m�� � K�� (1.59)

where � � (�1� � � � � �m)�.
To extract nonlinear features from a test point x, we compute the dot product

between Φ(x) and the nth normalized eigenvector in feature space,Feature
Extraction

�vn�Φ(x)��
m

∑
i�1

�ni k(xi� x)� (1.60)

Usually, this will be computationally far less expensive than taking the dot product
in the feature space explicitly.
A toy example is given in Chapter 14 (Figure 14.4). As in the case of SVMs, the

architecture can be visualized by Figure 1.9.

1.8 Empirical Results and Implementations 21

Σ

. . .

output σ (Σ υi k (x,xi))

weightsυ1 υ2 υm

. . .

. . .

test vector x

support vectors x1 ... xn

mapped vectors Φ(xi), Φ(x)Φ(x) Φ(xn)

dot product <Φ(x),Φ(xi)> = k (x,xi)< , > < , > < , >

Φ(x1) Φ(x2)

 σ ()

Figure 1.9 Architecture of SVMs and related kernel methods. The input x and the expan-
sion patterns (SVs) xi (we assume that we are dealing with handwritten digits) are nonlin-
early mapped (by Φ) into a feature space � where dot products are computed. Through
the use of the kernel k, these two layers are in practice computed in one step. The results
are linearly combined using weights �i , found by solving a quadratic program (in pattern
recognition, �i � yi�i ; in regression estimation, �i � �

�

i � �i) or an eigenvalue problem
(Kernel PCA). The linear combination is fed into the function � (in pattern recognition,
�(x) � sgn (x� b); in regression estimation, �(x) � x� b; in Kernel PCA, �(x) � x).

1.8 Empirical Results and Implementations

Having described the basics of SVMs, we now summarize some empirical find-
ings. By the use of kernels, the optimal margin classifier was turned into a high-
performance classifier. Surprisingly, it was observed that the polynomial kernelExamples of

Kernels
k(x� x�) � �x� x��d � (1.61)

the Gaussian

k(x� x�) � exp
�
�
�x� x��2

2 	2

�
� (1.62)

and the sigmoid

k(x� x�) � tanh
�

 �x� x���Θ

�
� (1.63)

with suitable choices of d 	 � and 	�
�Θ 	 � (here, �
 �
N), empirically led to

SV classifiers with very similar accuracies and SV sets (Section 7.8.2). In this sense,
the SV set seems to characterize (or compress) the given task in a manner which

