
1.6 Support Vector Regression 17

subject to the constraints (1.38) and (1.39), where the constant C � 0 determines
the trade-off between margin maximization and training error minimization.11

Incorporating a kernel, and rewriting it in terms of Lagrangemultipliers, this again
leads to the problem of maximizing (1.36), subject to the constraints

0 � �i � C for all i � 1� � � � �m� and
m

∑
i�1

�i yi � 0� (1.41)

The only difference from the separable case is the upper bound C on the Lagrange
multipliers �i. This way, the influence of the individual patterns (which could be
outliers) gets limited. As above, the solution takes the form (1.35). The threshold
b can be computed by exploiting the fact that for all SVs xi with �i � C, the slack
variable �i is zero (this again follows from the KKT conditions), and hence
m

∑
j�1

� j y jk(xi� xj)� b � yi� (1.42)

Geometrically speaking, choosing b amounts to shifting the hyperplane, and (1.42)
states that we have to shift the hyperplane such that the SVs with zero slack
variables lie on the �1 lines of Figure 1.5.
Another possible realization of a soft margin variant of the optimal hyperplane

uses the more natural �-parametrization. In it, the parameter C is replaced by a
parameter � � (0� 1] which can be shown to provide lower and upper bounds
for the fraction of examples that will be SVs and those that will have non-zero
slack variables, respectively. It uses a primal objective function with the error term� 1
�m ∑i �i

�
� � instead of C∑i �i (cf. (1.40)), and separation constraints that involve

a margin parameter �,

yi(�w� xi�� b) � �� �i for all i � 1� � � � �m� (1.43)

which itself is a variable of the optimization problem. The dual can be shown
to consist in maximizing the quadratic part of (1.36), subject to 0 � �i � 1	(�m),
∑i �i yi � 0 and the additional constraint∑i �i � 1.We shall return to thesemethods
in more detail in Section 7.5.

1.6 Support Vector Regression

Let us turn to a problem slightly more general than pattern recognition. Rather
than dealing with outputs y � ��1	, regression estimation is concerned with esti-
mating real-valued functions.
To generalize the SV algorithm to the regression case, an analog of the soft

margin is constructed in the space of the target values y (note that we now have

11. It is sometimes convenient to scale the sum in (1.40) by C�m rather than C, as done in
Chapter 7 below.



18 A Tutorial Introduction

x

x

x
x

x

x
xx

x

x
x

x

x

x

+ε−ε

x

ξ+ε

−ε
0

ξ

y

x

y� f (x)

loss

Figure 1.8 In SV regression, a tube with radius � is fitted to the data. The trade-off between
model complexity and points lying outside of the tube (with positive slack variables �) is
determined by minimizing (1.47).

y � � ) by using Vapnik’s 
-insensitive loss function [561] (Figure 1.8, see Chapters 3
-Insensitive
Loss and 9) . This quantifies the loss incurred by predicting f (x) instead of y as

c(x� y� f (x)) :� 
y� f (x)
� :�max�0� 
y� f (x)
 � 
	� (1.44)

To estimate a linear regression

f (x) � �w� x�� b� (1.45)

one minimizes

1
2
�w�2 �C

m

∑
i�1


yi � f (xi)
�� (1.46)

Note that the term �w�2 is the same as in pattern recognition (cf. (1.40)); for further
details, cf. Chapter 9.
We can transform this into a constrained optimization problem by introducing

slack variables, akin to the soft margin case. In the present case, we need two types
of slack variable for the two cases f (xi)� yi � 
 and yi� f (xi)� 
. We denote them
by � and ��, respectively, and collectively refer to them as �(�).
The optimization problem is given by

minimize
w����(�)��m �b��

� (w� �(�)) �
1
2
�w�2 �C

m

∑
i�1
(�i � ��i ) (1.47)

subject to f (xi)� yi � 
� �i (1.48)
yi � f (xi) � 
� ��i (1.49)

�i� �
�

i � 0 for all i � 1� � � � �m� (1.50)

Note that according to (1.48) and (1.49), any error smaller than 
 does not require
a nonzero �i or ��i and hence does not enter the objective function (1.47).
Generalization to kernel-based regression estimation is carried out in an analo-



1.7 Kernel Principal Component Analysis 19

gous manner to the case of pattern recognition. Introducing Lagrange multipliers,
one arrives at the following optimization problem (for C� 
 � 0 chosen a priori):

maximize
������m

W(����) � �

m

∑
i�1
(��

i � �i)�
m

∑
i�1
(��

i ��i)yi

�
1
2

m

∑
i� j�1

(��

i � �i)(��

j �� j)k(xi� xj)
(1.51)

subject to 0 � �i� �
�

i � C for all i � 1� � � � �m� and
m

∑
i�1
(�i � ��

i ) � 0� (1.52)

The regression estimate takes the formRegression
Function

f (x)�
m

∑
i�1
(��

i ��i)k(xi� x)� b� (1.53)

where b is computed using the fact that (1.48) becomes an equality with �i � 0 if
0 � �i � C, and (1.49) becomes an equality with ��i � 0 if 0 � ��

i � C (for details,
see Chapter 9). The solution thus looks quite similar to the pattern recognition case
(cf. (1.35) and Figure 1.9).
A number of extensions of this algorithm are possible. From an abstract point of

view, we just need some target function which depends on (w� �) (cf. (1.47)). There
are multiple degrees of freedom for constructing it, including some freedom how
to penalize, or regularize. For instance, more general loss functions can be used for
�, leading to problems that can still be solved efficiently ([512, 515], cf. Chapter 9).
Moreover, norms other than the 2-norm ��� can be used to regularize the solution
(see Sections 4.9 and 9.4).
Finally, the algorithm can be modified such that 
 need not be specified a priori.

Instead, one specifies an upper bound 0 � � � 1 on the fraction of points allowed
to lie outside the tube (asymptotically, the number of SVs) and the corresponding 

is computed automatically. This is achieved by using as primal objective function�-SV Regression

1
2
�w�2 �C

�
�m
�

m

∑
i�1


yi � f (xi)
�

�
(1.54)

instead of (1.46), and treating 
 � 0 as a parameter over which we minimize. For
more detail, cf. Section 9.3.

1.7 Kernel Principal Component Analysis

The kernel method for computing dot products in feature spaces is not restricted
to SVMs. Indeed, it has been pointed out that it can be used to develop nonlinear
generalizations of any algorithm that can be cast in terms of dot products, such as
principal component analysis (PCA) [480].
Principal component analysis is perhaps the most common feature extraction

algorithm; for details, see Chapter 14. The term feature extraction commonly refers


