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Figure 1.6 The idea of SVMs: map the training data into a higher-dimensional feature
space via Φ, and construct a separating hyperplane with maximum margin there. This
yields a nonlinear decision boundary in input space. By the use of a kernel function (1.2), it
is possible to compute the separating hyperplane without explicitly carrying out the map
into the feature space.

1.5 Support Vector Classification

We now have all the tools to describe SVMs (Figure 1.6). Everything in the last
sectionwas formulated in a dot product space.We think of this space as the feature
space� of Section 1.1. To express the formulas in terms of the input patterns in �,
we thus need to employ (1.6), which expresses the dot product of bold face feature
vectors x� x� in terms of the kernel k evaluated on input patterns x� x�,

k(x� x�) � �x� x�� � (1.34)

This substitution, which is sometimes referred to as the kernel trick, was used by
Boser, Guyon, and Vapnik [62] to extend the Generalized Portrait hyperplane clas-
sifier to nonlinear Support Vector Machines. Aizerman, Braverman, and Rozonoér
[4] called � the linearization space, and used it in the context of the potential func-
tion classification method to express the dot product between elements of � in
terms of elements of the input space.
The kernel trick can be applied since all feature vectors only occurred in dot

products (see (1.31) and (1.33)). The weight vector (cf. (1.29)) then becomes an
expansion in feature space, and therefore will typically no longer correspond to
the Φ-image of a single input space vector (cf. Chapter 18). We obtain decision
functions of the form (cf. (1.33))Decision
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and the following quadratic program (cf. (1.31)):

maximize
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subject to �i � 0 for all i � 1� � � � �m� and
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Figure 1.7 Example of an SV classifier found using a radial basis function kernel k(x� x�)�
exp(��x� x��2) (here, the input space is � � [�1�1]2). Circles and disks are two classes of
training examples; the middle line is the decision surface; the outer lines precisely meet the
constraint (1.25). Note that the SVs found by the algorithm (marked by extra circles) are not
centers of clusters, but examples which are critical for the given classification task. Gray
values code �∑mi�1 yi�ik(x� xi)� b�, the modulus of the argument of the decision function
(1.35). The top and the bottom lines indicate places where it takes the value 1 (from [471]).

Figure 1.7 shows an example of this approach, using a Gaussian radial basis
function kernel. We will later study the different possibilities for the kernel func-
tion in detail (Chapters 2 and 13).
In practice, a separating hyperplane may not exist, e.g., if a high noise level

causes a large overlap of the classes. To allow for the possibility of examplesSoft Margin
Hyperplane violating (1.25), one introduces slack variables [111, 561, 481]

�i � 0 for all i � 1� � � � �m� (1.38)

in order to relax the constraints (1.25) to

yi(�w� xi�� b) � 1� �i for all i � 1� � � � �m� (1.39)

A classifier that generalizes well is then found by controlling both the classifier
capacity (via �w�) and the sum of the slacks ∑i �i. The latter can be shown to
provide an upper bound on the number of training errors.
One possible realization of such a soft margin classifier is obtained byminimizing

the objective function

� (w� �) �
1
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m
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�i (1.40)
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subject to the constraints (1.38) and (1.39), where the constant C � 0 determines
the trade-off between margin maximization and training error minimization.11

Incorporating a kernel, and rewriting it in terms of Lagrangemultipliers, this again
leads to the problem of maximizing (1.36), subject to the constraints

0 � �i � C for all i � 1� � � � �m� and
m

∑
i�1

�i yi � 0� (1.41)

The only difference from the separable case is the upper bound C on the Lagrange
multipliers �i. This way, the influence of the individual patterns (which could be
outliers) gets limited. As above, the solution takes the form (1.35). The threshold
b can be computed by exploiting the fact that for all SVs xi with �i � C, the slack
variable �i is zero (this again follows from the KKT conditions), and hence
m

∑
j�1

� j y jk(xi� xj)� b � yi� (1.42)

Geometrically speaking, choosing b amounts to shifting the hyperplane, and (1.42)
states that we have to shift the hyperplane such that the SVs with zero slack
variables lie on the �1 lines of Figure 1.5.
Another possible realization of a soft margin variant of the optimal hyperplane

uses the more natural �-parametrization. In it, the parameter C is replaced by a
parameter � � (0� 1] which can be shown to provide lower and upper bounds
for the fraction of examples that will be SVs and those that will have non-zero
slack variables, respectively. It uses a primal objective function with the error term� 1

�m ∑i �i
�
� 	 instead of C∑i �i (cf. (1.40)), and separation constraints that involve

a margin parameter 	,

yi(�w� xi�� b) � 	� �i for all i � 1� � � � �m� (1.43)

which itself is a variable of the optimization problem. The dual can be shown
to consist in maximizing the quadratic part of (1.36), subject to 0 � �i � 1
(�m),
∑i �i yi � 0 and the additional constraint∑i �i � 1.We shall return to thesemethods
in more detail in Section 7.5.

1.6 Support Vector Regression

Let us turn to a problem slightly more general than pattern recognition. Rather
than dealing with outputs y � 	�1
, regression estimation is concerned with esti-
mating real-valued functions.
To generalize the SV algorithm to the regression case, an analog of the soft

margin is constructed in the space of the target values y (note that we now have

11. It is sometimes convenient to scale the sum in (1.40) by C�m rather than C, as done in
Chapter 7 below.


