
1.4 Hyperplane Classifiers 11

that the small training error does not guarantee a small test error. This illustrates
how the bound can apply independent of assumptions about the underlying
distribution P(x� y): it always holds (provided that h � m), but it does not always
make a nontrivial prediction. In order to get nontrivial predictions from (1.19),
the function class must be restricted such that its capacity (e.g., VC dimension)
is small enough (in relation to the available amount of data). At the same time,
the class should be large enough to provide functions that are able to model the
dependencies hidden in P(x� y). The choice of the set of functions is thus crucial for
learning from data. In the next section, we take a closer look at a class of functions
which is particularly interesting for pattern recognition problems.

1.4 Hyperplane Classifiers

In the present section, we shall describe a hyperplane learning algorithm that can
be performed in a dot product space (such as the feature space that we introduced
earlier). As described in the previous section, to design learning algorithms whose
statistical effectiveness can be controlled, one needs to come up with a class of
functions whose capacity can be computed. Vapnik et al. [573, 566, 570] considered
the class of hyperplanes in some dot product space�,

�w� x�� b � 0 wherew ��� b � � � (1.21)

corresponding to decision functions

f (x) � sgn (�w� x�� b)� (1.22)

and proposed a learning algorithm for problems which are separable by hyper-
planes (sometimes said to be linearly separable), termed the Generalized Portrait, for
constructing f from empirical data. It is based on two facts. First (see Chapter 7),
among all hyperplanes separating the data, there exists a unique optimal hyper-
plane, distinguished by the maximum margin of separation between any training
point and the hyperplane. It is the solution ofOptimal

Hyperplane
maximize
w���b��

min��x� xi� �x ��� �w� x�� b � 0� i � 1� � � � �m� � (1.23)

Second (see Chapter 5), the capacity (as discussed in Section 1.3) of the class of sep-
arating hyperplanes decreases with increasing margin. Hence there are theoretical
arguments supporting the good generalization performance of the optimal hyper-
plane, cf. Chapters 5, 7, 12. In addition, it is computationally attractive, since we
will show below that it can be constructed by solving a quadratic programming
problem for which efficient algorithms exist (see Chapters 6 and 10).
Note that the form of the decision function (1.22) is quite similar to our earlier

example (1.9). The ways in which the classifiers are trained, however, are different.
In the earlier example, the normal vector of the hyperplanewas trivially computed
from the class means as w � c�� c�.

12 A Tutorial Introduction

,
w

{x | <w x> + b = 0},

{x | <w x> + b = −1},
{x | <w x> + b = +1},

x2
x1

Note:

<w x1> + b = +1
<w x2> + b = −1

=> <w (x1−x2)> = 2

=> (x1−x2) =
w

||w||< >

,
,

,

, 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆

Figure 1.5 A binary classification toy problem: separate balls from diamonds. The optimal
hyperplane (1.23) is shown as a solid line. The problem being separable, there exists a weight
vector w and a threshold b such that yi(�w�xi�� b) � 0 (i � 1� � � � �m). Rescaling w and
b such that the point(s) closest to the hyperplane satisfy � �w�xi� � b� � 1, we obtain a
canonical form (w� b) of the hyperplane, satisfying yi(�w�xi� � b) � 1. Note that in this
case, the margin (the distance of the closest point to the hyperplane) equals 1��w�. This
can be seen by considering two points x1�x2 on opposite sides of the margin, that is,
�w�x1�� b � 1� �w�x2�� b � �1, and projecting them onto the hyperplane normal vector
w��w�.

In the present case, we need to do some additional work to find the normal
vector that leads to the largest margin. To construct the optimal hyperplane, we
have to solve

minimize
w���b��

� (w) �
1
2
�w�2 (1.24)

subject to yi(�w� xi�� b) 	 1 for all i � 1� � � � �m� (1.25)

Note that the constraints (1.25) ensure that f (xi) will be �1 for yi � �1, and �1
for yi � �1. Now one might argue that for this to be the case, we don’t actually
need the “	 1” on the right hand side of (1.25). However, without it, it would
not be meaningful to minimize the length of w: to see this, imagine we wrote
“� 0” instead of “	 1.” Now assume that the solution is (w� b). Let us rescale this
solution by multiplication with some 0 � � � 1. Since � � 0, the constraints are
still satisfied. Since � � 1, however, the length of w has decreased. Hence (w� b)
cannot be the minimizer of � (w).
The “	 1” on the right hand side of the constraints effectively fixes the scaling

of w. In fact, any other positive number would do.
Let us now try to get an intuition for why we should be minimizing the length

of w, as in (1.24). If �w� were 1, then the left hand side of (1.25) would equal
the distance from xi to the hyperplane (cf. (1.23)). In general, we have to divide

1.4 Hyperplane Classifiers 13

yi(�w� xi�� b) by �w� to transform it into this distance. Hence, if we can satisfy
(1.25) for all i� 1� � � � �mwith anw of minimal length, then the overall margin will
be maximized.
A more detailed explanation of why this leads to the maximum margin hyper-

plane will be given in Chapter 7. A short summary of the argument is also given
in Figure 1.5.
The function � in (1.24) is called the objective function, while (1.25) are called in-

equality constraints. Together, they form a so-called constrained optimization problem.
Problems of this kind are dealt with by introducing Lagrange multipliers �i 	 0 and
a Lagrangian9Lagrangian

L(w� b��) �
1
2
�w�2 �

m

∑
i�1

�i
�
yi(�xi�w�� b)� 1

�
� (1.26)

The Lagrangian L has to be minimized with respect to the primal variablesw and b
and maximized with respect to the dual variables �i (in other words, a saddle point
has to be found). Note that the constraint has been incorporated into the second
term of the Lagrangian; it is not necessary to enforce it explicitly.
Let us try to get some intuition for this way of dealing with constrained opti-

mization problems. If a constraint (1.25) is violated, then yi(�w� xi�� b)� 1 � 0,
in which case L can be increased by increasing the corresponding �i. At the
same time, w and b will have to change such that L decreases. To prevent
�i
�
yi(�w� xi�� b)� 1

�
from becoming an arbitrarily large negative number, the

change in w and b will ensure that, provided the problem is separable, the
constraint will eventually be satisfied. Similarly, one can understand that for
all constraints which are not precisely met as equalities (that is, for which
yi(�w� xi� � b)� 1 � 0), the corresponding �i must be 0: this is the value of �i
that maximizes L. The latter is the statement of the Karush-Kuhn-Tucker (KKT)KKT Conditions
complementarity conditions of optimization theory (Chapter 6).
The statement that at the saddle point, the derivatives of L with respect to the

primal variables must vanish,

�

�b
L(w� b��) � 0 and

�

�w
L(w� b��) � 0� (1.27)

leads to
m

∑
i�1

�i yi � 0 (1.28)

and

w �
m

∑
i�1

�i yixi� (1.29)

9. Henceforth, we use boldface Greek letters as a shorthand for corresponding vectors
� � (�1� � � � � �m).

14 A Tutorial Introduction

The solution vector thus has an expansion (1.29) in terms of a subset of the training
patterns, namely those patterns with non-zero �i, called Support Vectors (SVs) (cf.
(1.15) in the initial example). By the KKT conditions,Support Vector

�i
�
yi
�
�xi�w�� b

�
� 1

�
� 0 for all i � 1� � � � �m� (1.30)

the SVs lie on the margin (cf. Figure 1.5). All remaining training examples (x j� yj)
are irrelevant: their constraint y j(

�
w� x j

�
� b) 	 1 (cf. (1.25)) could just as well

be left out, and they do not appear in the expansion (1.29). This nicely captures
our intuition of the problem: as the hyperplane (cf. Figure 1.5) is completely
determined by the patterns closest to it, the solution should not depend on the
other examples.
By substituting (1.28) and (1.29) into the Lagrangian (1.26), one eliminates the

primal variablesw and b, arriving at the so-called dual optimization problem, which
is the problem that one usually solves in practice:Dual Problem

maximize
���m

W(�) �
m

∑
i�1

�i �
1
2

m

∑
i� j�1

�i� j yi y j
�
xi� x j

�
(1.31)

subject to �i 	 0 for all i � 1� � � � �m and
m

∑
i�1

�i yi � 0� (1.32)

Using (1.29), the hyperplane decision function (1.22) can thus be written asDecision
Function

f (x) � sgn

�
m

∑
i�1
yi�i �x� xi�� b

�
� (1.33)

where b is computed by exploiting (1.30) (for details, cf. Chapter 7).
The structure of the optimization problem closely resembles those that typically

arise in Lagrange’s formulation of mechanics (e.g., [206]). In the latter class of
problem, it is also often the case that only a subset of constraints become active.
For instance, if we keep a ball in a box, then it will typically roll into one of the
corners. The constraints corresponding to the walls which are not touched by the
ball are irrelevant, and those walls could just as well be removed.
Seen in this light, it is not too surprising that it is possible to give a mechanical

interpretation of optimal margin hyperplanes [87]: If we assume that each SV xiMechanical
Analogy exerts a perpendicular force of size �i and direction yj
w	�w� on a solid plane

sheet lying along the hyperplane, then the solution satisfies the requirements for
mechanical stability. The constraint (1.28) states that the forces on the sheet sum to
zero, and (1.29) implies that the torques also sum to zero, via ∑i xi � yi�iw	�w� �
w�w	�w�� 0.10 This mechanical analogy illustrates the physical meaning of the
term Support Vector.

10. Here, the � denotes the vector (or cross) product, satisfying v� v � 0 for all v ��.

1.5 Support Vector Classification 15

feature spaceinput space

Φ

◆

◆
◆

◆
❍

❍
❍

❍
❍

❍

Figure 1.6 The idea of SVMs: map the training data into a higher-dimensional feature
space via Φ, and construct a separating hyperplane with maximum margin there. This
yields a nonlinear decision boundary in input space. By the use of a kernel function (1.2), it
is possible to compute the separating hyperplane without explicitly carrying out the map
into the feature space.

1.5 Support Vector Classification

We now have all the tools to describe SVMs (Figure 1.6). Everything in the last
sectionwas formulated in a dot product space.We think of this space as the feature
space� of Section 1.1. To express the formulas in terms of the input patterns in �,
we thus need to employ (1.6), which expresses the dot product of bold face feature
vectors x� x� in terms of the kernel k evaluated on input patterns x� x�,

k(x� x�) � �x� x�� � (1.34)

This substitution, which is sometimes referred to as the kernel trick, was used by
Boser, Guyon, and Vapnik [62] to extend the Generalized Portrait hyperplane clas-
sifier to nonlinear Support Vector Machines. Aizerman, Braverman, and Rozonoér
[4] called � the linearization space, and used it in the context of the potential func-
tion classification method to express the dot product between elements of � in
terms of elements of the input space.
The kernel trick can be applied since all feature vectors only occurred in dot

products (see (1.31) and (1.33)). The weight vector (cf. (1.29)) then becomes an
expansion in feature space, and therefore will typically no longer correspond to
the Φ-image of a single input space vector (cf. Chapter 18). We obtain decision
functions of the form (cf. (1.33))Decision

Function
f (x)� sgn

�
m

∑
i�1
yi�i �Φ(x)�Φ(xi)�� b

�
� sgn

�
m

∑
i�1
yi�ik(x� xi)� b

�
� (1.35)

and the following quadratic program (cf. (1.31)):

maximize
���m

W(�) �
m

∑
i�1

�i �
1
2

m

∑
i� j�1

�i� j yiy jk(xi� xj) (1.36)

subject to �i 	 0 for all i � 1� � � � �m� and
m

∑
i�1

�i yi � 0� (1.37)

