
6 A Tutorial Introduction

Parzen windows estimators of the two class densities,

p�(x) :�
1
m�

∑
�i�yi��1�

k(x� xi) and p�(x) :�
1
m�

∑
�i�yi��1�

k(x� xi)� (1.14)

where x � �.Parzen Windows
Given some point x, the label is then simply computed by checking which of

the two values p�(x) or p�(x) is larger, which leads directly to (1.11). Note that
this decision is the best we can do if we have no prior information about the
probabilities of the two classes.
The classifier (1.11) is quite close to the type of classifier that this book deals with

in detail. Both take the form of kernel expansions on the input domain,

y � sgn

�
m

∑
i�1

�ik(x� xi)� b

�
� (1.15)

In both cases, the expansions correspond to a separating hyperplane in a feature
space. In this sense, the �i can be considered a dual representation of the hyper-
plane’s normal vector [223]. Both classifiers are example-based in the sense that
the kernels are centered on the training patterns; that is, one of the two arguments
of the kernel is always a training pattern. A test point is classified by comparing it
to all the training points that appear in (1.15) with a nonzero weight.
More sophisticated classification techniques, to be discussed in the remainder

of the book, deviate from (1.11) mainly in the selection of the patterns on which
the kernels are centered and in the choice of weights �i that are placed on the
individual kernels in the decision function. It will no longer be the case that all
training patterns appear in the kernel expansion, and the weights of the kernels
in the expansion will no longer be uniform within the classes — recall that in the
current example, cf. (1.11), the weights are either (1�m�) or (�1�m�), depending
on the class to which the pattern belongs.
In the feature space representation, this statement corresponds to saying that

we will study normal vectors w of decision hyperplanes that can be represented
as general linear combinations (i.e., with non-uniform coefficients) of the training
patterns. For instance, we might want to remove the influence of patterns that are
very far away from the decision boundary, either since we expect that they will not
improve the generalization error of the decision function, or since wewould like to
reduce the computational cost of evaluating the decision function (cf. (1.11)). The
hyperplane will then only depend on a subset of training patterns called Support
Vectors.

1.3 Some Insights From Statistical Learning Theory

With the above example in mind, let us now consider the problem of pattern
recognition in a slightly more formal setting [559, 152, 186]. This will allow us
to indicate the factors affecting the design of “better” algorithms. Rather than just

1.3 Some Insights From Statistical Learning Theory 7

Figure 1.2 2D toy example of binary classification, solved using threemodels (the decision
boundaries are shown). The models vary in complexity, ranging from a simple one (left),
which misclassifies a large number of points, to a complex one (right), which “trusts” each
point and comes up with solution that is consistent with all training points (but may not
work well on new points). As an aside: the plots were generated using the so-called soft-
margin SVM to be explained in Chapter 7; cf. also Figure 7.10.

providing tools to come up with new algorithms, we also want to provide some
insight in how to do it in a promising way.
In two-class pattern recognition, we seek to infer a function

f : �� ��1� (1.16)

from input-output training data (1.1). The training data are sometimes also called
the sample.
Figure 1.2 shows a simple 2D toy example of a pattern recognition problem.

The task is to separate the solid dots from the circles by finding a function which
takes the value 1 on the dots and �1 on the circles. Note that instead of plotting
this function, we may plot the boundaries where it switches between 1 and �1.
In the rightmost plot, we see a classification function which correctly separates
all training points. From this picture, however, it is unclear whether the same
would hold true for test points which stem from the same underlying regularity.
For instance, what should happen to a test point which lies close to one of the
two “outliers,” sitting amidst points of the opposite class? Maybe the outliers
should not be allowed to claim their own custom-made regions of the decision
function. To avoid this, we could try to go for a simpler model which disregards
these points. The leftmost picture shows an almost linear separation of the classes.
This separation, however, not only misclassifies the above two outliers, but also
a number of “easy” points which are so close to the decision boundary that
the classifier really should be able to get them right. Finally, the central picture
represents a compromise, by using a model with an intermediate complexity,
which gets most points right, without putting too much trust in any individual
point.
The goal of statistical learning theory is to place these intuitive arguments in

a mathematical framework. To this end, it studies mathematical properties of
learning machines. These properties are usually properties of the function class

8 A Tutorial Introduction

x

g(x)
1

-1

Figure 1.3 A 1D classification problem, with a training set of three points (marked by cir-
cles), and three test inputs (marked on the x-axis). Classification is performed by threshold-
ing real-valued functions g(x) according to sgn (f (x)). Note that both functions (dotted line,
and solid line) perfectly explain the training data, but they give opposite predictions on the
test inputs. Lacking any further information, the training data alone give us no means to
tell which of the two functions is to be preferred.

that the learning machine can implement.
We assume that the data are generated independently from some unknown (but

fixed) probability distribution P(x� y).5 This is a standard assumption in learning
theory; data generated this way is commonly referred to as iid (independent and
identically distributed). Our goal is to find a function f that will correctly classifyIID Data
unseen examples (x� y), so that f (x)� y for examples (x� y) that are also generated
from P(x� y).6 Correctness of the classification is measured bymeans of the zero-one
loss function c(x� y� f (x)) :� 1

2 � f (x)� y�. Note that the loss is 0 if (x� y) is classifiedLoss Function
correctly, and 1 otherwise.
If we put no restriction on the set of functions from which we choose our

estimated f , however, then even a function that does very well on the training
data, e.g., by satisfying f (xi) � yi for all i � 1� � � � �m, might not generalize well
to unseen examples. To see this, note that for each function f and any test setTest Data
(x̄1� ȳ1)� � � � � (x̄m̄� ȳm̄) � �� ��1�� satisfying �x̄1� � � � � x̄m̄� 	 �x1� � � � � xm� �
, there
exists another function f � such that f �(xi) � f (xi) for all i � 1� � � � �m, yet f �(x̄i) ��
f (x̄i) for all i � 1� � � � � m̄ (cf. Figure 1.3). As we are only given the training data, we
have nomeans of selectingwhich of the two functions (and hencewhich of the two
different sets of test label predictions) is preferable. We conclude that minimizing
only the (average) training error (or empirical risk),Empirical Risk

Remp[f] �
1
m

m

∑
i�1

1
2
� f (xi)� yi�� (1.17)

does not imply a small test error (called risk), averaged over test examples drawn
from the underlying distribution P(x� y),Risk

5. For a definition of a probability distribution, see Section B.1.1.
6. We mostly use the term example to denote a pair consisting of a training pattern x and
the corresponding target y.

1.3 Some Insights From Statistical Learning Theory 9

R[f]�
� 1
2
� f (x)� y� dP(x� y)� (1.18)

The risk can be defined for any loss function, provided the integral exists. For the
present zero-one loss function, the risk equals the probability of misclassification.7

Statistical learning theory (Chapter 5, [570, 559, 561, 136, 562, 14]), or VC
(Vapnik-Chervonenkis) theory, shows that it is imperative to restrict the set of
functions from which f is chosen to one that has a capacity suitable for the amountCapacity
of available training data. VC theory provides bounds on the test error. The min-
imization of these bounds, which depend on both the empirical risk and the ca-
pacity of the function class, leads to the principle of structural risk minimization
[559].
The best-known capacity concept of VC theory is the VC dimension, defined asVC dimension

follows: each function of the class separates the patterns in a certain way and thus
induces a certain labelling of the patterns. Since the labels are in ��1�, there are
at most 2m different labellings for m patterns. A very rich function class might be
able to realize all 2m separations, in which case it is said to shatter the m points.Shattering
However, a given class of functions might not be sufficiently righ to shatter the
m points. The VC dimension is defined as the largest m such that there exists a
set of m points which the class can shatter, and � if no such m exists. It can be
thought of as a one-number summary of a learning machine’s capacity (for an
example, see Figure 1.4). As such, it is necessarily somewhat crude. More accurate
capacity measures are the annealed VC entropy or the growth function. These are
usually considered to be harder to evaluate, but they play a fundamental role in
the conceptual part of VC theory. Another interesting capacity measure, which can
be thought of as a scale-sensitive version of the VC dimension, is the fat shattering
dimension [286, 6]. For further details, cf. Chapters 5 and 12.
Whilst it will be difficult for the non-expert to appreciate the results of VC theory

in this chapter, we will nevertheless briefly describe an example of a VC bound:VC Bound

7. The risk-based approach to machine learning has its roots in statistical decision theory
[582, 166, 43]. In that context, f (x) is thought of as an action, and the loss function measures
the loss incurred by taking action f (x) upon observing x when the true output (state of
nature) is y.
Like many fields of statistics, decision theory comes in two flavors. The present approach

is a frequentist one. It considers the risk as a function of the distribution P and the decision
function f . The Bayesian approach considers parametrized families PΘ to model the distri-
bution. Given a prior over Θ (which need not in general be a finite-dimensional vector),
the Bayes risk of a decision function f is the expected frequentist risk, where the expectation
is taken over the prior. Minimizing the Bayes risk (over decision functions) then leads to
a Bayes decision function. Bayesians thus act as if the parameter Θ were actually a random
variable whose distribution is known. Frequentists, who do not make this (somewhat bold)
assumption, have to resort to other strategies for picking a decision function. Examples
thereof are considerations like invariance and unbiasedness, both used to restrict the class
of decision rules, and the minimax principle. A decision function is said to be minimax if
it minimizes (over all decision functions) the maximal (over all distributions) risk. For a
discussion of the relationship of these issues to VC theory, see Problem 5.9.

10 A Tutorial Introduction

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x

xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx

x

x

x

x

x

x
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

x

x

x

Figure 1.4 A simple VC dimension example. There are 23 � 8 ways of assigning 3 points
to two classes. For the displayed points in �

2 , all 8 possibilities can be realized using
separating hyperplanes, in other words, the function class can shatter 3 points. This would
not work if we were given 4 points, no matter how we placed them. Therefore, the VC
dimension of the class of separating hyperplanes in � 2 is 3.

if h � m is the VC dimension of the class of functions that the learning machine
can implement, then for all functions of that class, independent of the underlying
distribution P generating the data, with a probability of at least 1 � Æ over the
drawing of the training sample,8 the bound

R[f] Remp[f]� �(h�m� Æ) (1.19)

holds, where the confidence term (or capacity term) � is defined as

�(h�m� Æ)�

�
1
m

�
h
�
ln
2m
h
� 1
�
� ln

4
Æ

�
� (1.20)

The bound (1.19) merits further explanation. Suppose we wanted to learn a
“dependency” where patterns and labels are statistically independent, P(x� y) �
P(x)P(y). In that case, the pattern x contains no information about the label y. If,
moreover, the two classes �1 and �1 are equally likely, there is no way of making
a good guess about the label of a test pattern.
Nevertheless, given a training set of finite size, we can always come up with

a learning machine which achieves zero training error (provided we have no
examples contradicting each other, i.e., whenever two patterns are identical, then
they must come with the same label). To reproduce the random labellings by
correctly separating all training examples, however, this machine will necessarily
require a large VC dimension h. Therefore, the confidence term (1.20), which
increases monotonically with h, will be large, and the bound (1.19) will show

8. Recall that each training example is generated from P(x� y), and thus the training data
are subject to randomness.

1.4 Hyperplane Classifiers 11

that the small training error does not guarantee a small test error. This illustrates
how the bound can apply independent of assumptions about the underlying
distribution P(x� y): it always holds (provided that h � m), but it does not always
make a nontrivial prediction. In order to get nontrivial predictions from (1.19),
the function class must be restricted such that its capacity (e.g., VC dimension)
is small enough (in relation to the available amount of data). At the same time,
the class should be large enough to provide functions that are able to model the
dependencies hidden in P(x� y). The choice of the set of functions is thus crucial for
learning from data. In the next section, we take a closer look at a class of functions
which is particularly interesting for pattern recognition problems.

1.4 Hyperplane Classifiers

In the present section, we shall describe a hyperplane learning algorithm that can
be performed in a dot product space (such as the feature space that we introduced
earlier). As described in the previous section, to design learning algorithms whose
statistical effectiveness can be controlled, one needs to come up with a class of
functions whose capacity can be computed. Vapnik et al. [573, 566, 570] considered
the class of hyperplanes in some dot product space�,

�w� x�� b � 0 wherew ��� b � � � (1.21)

corresponding to decision functions

f (x) � sgn (�w� x�� b)� (1.22)

and proposed a learning algorithm for problems which are separable by hyper-
planes (sometimes said to be linearly separable), termed the Generalized Portrait, for
constructing f from empirical data. It is based on two facts. First (see Chapter 7),
among all hyperplanes separating the data, there exists a unique optimal hyper-
plane, distinguished by the maximum margin of separation between any training
point and the hyperplane. It is the solution ofOptimal

Hyperplane
maximize
w���b��

min��x� xi� �x ��� �w� x�� b � 0� i � 1� � � � �m� � (1.23)

Second (see Chapter 5), the capacity (as discussed in Section 1.3) of the class of sep-
arating hyperplanes decreases with increasing margin. Hence there are theoretical
arguments supporting the good generalization performance of the optimal hyper-
plane, cf. Chapters 5, 7, 12. In addition, it is computationally attractive, since we
will show below that it can be constructed by solving a quadratic programming
problem for which efficient algorithms exist (see Chapters 6 and 10).
Note that the form of the decision function (1.22) is quite similar to our earlier

example (1.9). The ways in which the classifiers are trained, however, are different.
In the earlier example, the normal vector of the hyperplanewas trivially computed
from the class means as w � c�� c�.

