
4 A Tutorial Introduction

1.2 A Simple Pattern Recognition Algorithm

We are now in the position to describe a pattern recognition learning algorithm
that is arguably one of the simplest possible. We make use of the structure intro-
duced in the previous section; that is, we assume that our data are embedded into
a dot product space �.3 Using the dot product, we can measure distances in this
space. The basic idea of the algorithm is to assign a previously unseen pattern to
the class with closer mean.
We thus begin by computing the means of the two classes in feature space;

c� �
1
m�

∑
�i�yi��1�

xi� (1.7)

c� �
1
m�

∑
�i�yi��1�

xi� (1.8)

where m� and m� are the number of examples with positive and negative labels,
respectively. We assume that both classes are non-empty, thus m��m� � 0. We
assign a new point x to the class whose mean is closest (Figure 1.1). This geometric
construction can be formulated in terms of the dot product ��� ��. Half way between
c� and c� lies the point c :� (c� � c�)�2. We compute the class of x by checking
whether the vector x� c connecting c to x encloses an angle smaller than ��2 with
the vectorw :� c� � c� connecting the class means. This leads to

y � sgn �(x� c)�w�

� sgn �(x� (c� � c�)�2)� (c� � c�)�

� sgn (�x� c�� � �x� c��� b)� (1.9)

Here, we have defined the offset

b :�
1
2
(�c��2 ��c��2)� (1.10)

with the norm �x� :�
�
�x� x�. If the class means have the same distance to the

origin, then b will vanish.
Note that (1.9) induces a decision boundary which has the form of a hyperplane

(Figure 1.1); that is, a set of points that satisfy a constraint expressible as a linear
equation.
It is instructive to rewrite (1.9) in terms of the input patterns xi, using the kernel

k to compute the dot products. Note, however, that (1.6) only tells us how to
compute the dot products between vectorial representations xi of inputs xi. We
therefore need to express the vectors ci and w in terms of x1� � � � � xm.
To this end, substitute (1.7) and (1.8) into (1.9) to get the decision functionDecision

Function

3. For the definition of a dot product space, see Section B.2.



1.2 A Simple Pattern Recognition Algorithm 5

o
+

+

+

+

o
o

c+

c-

x-c

w

x

c

.

Figure 1.1 A simple geometric classification algorithm: given two classes of points (de-
picted by ‘o’ and ‘+’), compute their means c�� c� and assign a test pattern x to the one
whose mean is closer. This can be done by looking at the dot product between x� c (where
c� (c�� c�)�2) andw :� c�� c�, which changes sign as the enclosed angle passes through
��2. Note that the corresponding decision boundary is a hyperplane (the dotted line) or-
thogonal tow.

y � sgn

�
1
m�

∑
�i�yi��1�

�x� xi� �
1
m�

∑
�i�yi��1�

�x� xi�� b

�

� sgn

�
1
m�

∑
�i�yi��1�

k(x� xi)�
1
m�

∑
�i�yi��1�

k(x� xi)� b

�
� (1.11)

Similarly, the offset becomes

b :�
1
2

�
� 1
m2�

∑
�(i� j)�yi�yj��1�

k(xi� xj)�
1
m2
�

∑
�(i� j)�yi�yj��1�

k(xi� xj)

�
� � (1.12)

Surprisingly, it turns out that this rather simple-minded approach contains a well-
known statistical classification method as a special case. Assume that the class
means have the same distance to the origin (hence b � 0, cf. (1.10)), and that k can
be viewed as a probability density when one of its arguments is fixed. By this we
mean that it is positive and has unit integral,4�
�

k(x� x�)dx � 1 for all x� � �� (1.13)

In this case, (1.11) takes the form of the so-called Bayes classifier separating the two
classes, subject to the assumption that the two classes of patterns were generated
by sampling from two probability distributions that are correctly estimated by the

4. In order to state this assumption, we have to require that we can define an integral on �.



6 A Tutorial Introduction

Parzen windows estimators of the two class densities,

p�(x) :�
1
m�

∑
�i�yi��1�

k(x� xi) and p�(x) :�
1
m�

∑
�i�yi��1�

k(x� xi)� (1.14)

where x � �.Parzen Windows
Given some point x, the label is then simply computed by checking which of

the two values p�(x) or p�(x) is larger, which leads directly to (1.11). Note that
this decision is the best we can do if we have no prior information about the
probabilities of the two classes.
The classifier (1.11) is quite close to the type of classifier that this book deals with

in detail. Both take the form of kernel expansions on the input domain,

y � sgn

�
m

∑
i�1

�ik(x� xi)� b

�
� (1.15)

In both cases, the expansions correspond to a separating hyperplane in a feature
space. In this sense, the �i can be considered a dual representation of the hyper-
plane’s normal vector [223]. Both classifiers are example-based in the sense that
the kernels are centered on the training patterns; that is, one of the two arguments
of the kernel is always a training pattern. A test point is classified by comparing it
to all the training points that appear in (1.15) with a nonzero weight.
More sophisticated classification techniques, to be discussed in the remainder

of the book, deviate from (1.11) mainly in the selection of the patterns on which
the kernels are centered and in the choice of weights �i that are placed on the
individual kernels in the decision function. It will no longer be the case that all
training patterns appear in the kernel expansion, and the weights of the kernels
in the expansion will no longer be uniform within the classes — recall that in the
current example, cf. (1.11), the weights are either (1�m�) or (�1�m�), depending
on the class to which the pattern belongs.
In the feature space representation, this statement corresponds to saying that

we will study normal vectors w of decision hyperplanes that can be represented
as general linear combinations (i.e., with non-uniform coefficients) of the training
patterns. For instance, we might want to remove the influence of patterns that are
very far away from the decision boundary, either since we expect that they will not
improve the generalization error of the decision function, or since wewould like to
reduce the computational cost of evaluating the decision function (cf. (1.11)). The
hyperplane will then only depend on a subset of training patterns called Support
Vectors.

1.3 Some Insights From Statistical Learning Theory

With the above example in mind, let us now consider the problem of pattern
recognition in a slightly more formal setting [559, 152, 186]. This will allow us
to indicate the factors affecting the design of “better” algorithms. Rather than just


