
1 A Tutorial Introduction

This chapter describes the central ideas of Support Vector (SV) learning in a
nutshell. Its goal is to provide an overview of the basic concepts.
One such concept is that of a kernel. Rather than going immediately into math-

ematical detail, we introduce kernels informally as similarity measures that ariseOverview
from a particular representation of patterns (Section 1.1), and describe a simple
kernel algorithm for pattern recognition (Section 1.2). Following this, we report
some basic insights from statistical learning theory, the mathematical theory that
underlies SV learning (Section 1.3). Finally, we briefly review some of the main
kernel algorithms, namely Support Vector Machines (SVMs) (Sections 1.4 to 1.6)
and kernel principal component analysis (Section 1.7).
We have aimed to keep this introductory chapter as basic as possible, whilstPrerequisites

giving a fairly comprehensive overview of the main ideas that will be discussed in
the present book. After reading it, readers should be able to place all the remaining
material in the book in context and judge which of the following chapters is of
particular interest to them.
As a consequence of this aim, most of the claims in the chapter are not proven.

Abundant references to later chapters will enable the interested reader to fill in the
gaps at a later stage, without losing sight of the main ideas described presently.

1.1 Data Representation and Similarity

One of the fundamental problems of learning theory is the following: suppose we
are given two classes of objects. We are then faced with a new object, and we have
to assign it to one of the two classes. This problem can be formalized as follows:
we are given empirical dataTraining Data

(x1� y1)� � � � � (xm� ym) � ����1�� (1.1)

Here, � is some nonempty set from which the patterns xi (sometimes called cases,
inputs, instances, or observations) are taken, usually referred to as the domain; the yi
are called labels, targets, outputs or sometimes also observations.1 Note that there are

1. Note that we use the term pattern to refer to individual observations. A (smaller) part of
the existing literature reserves the term for a generic prototypewhich underlies the data. The



2 A Tutorial Introduction

only two classes of patterns. For the sake of mathematical convenience, they are
labelled by�1 and�1, respectively. This is a particularly simple situation, referred
to as (binary) pattern recognition or (binary) classification.
It should be emphasized that the patterns could be just about anything, and we

have made no assumptions on � other than it being a set. For instance, the task
might be to categorize sheep into two classes, in which case the patterns xi would
simply be sheep.
In order to study the problem of learning, however, we need an additional type

of structure. In learning, we want to be able to generalize to unseen data points. In
the case of pattern recognition, this means that given some new pattern x � �, we
want to predict the corresponding y � ��1�.2 By this we mean, loosely speaking,
that we choose y such that (x� y) is in some sense similar to the training examples
(1.1). To this end, we need notions of similarity in � and in ��1�.
Characterizing the similarity of the outputs ��1� is easy: in binary classification,

only two situations can occur: two labels can either be identical or different. The
choice of the similarity measure for the inputs, on the other hand, is a deep
question that lies at the core of the field of machine learning.
Let us consider a similarity measure of the form

k : ���� �

(x� x�) �� k(x� x�)� (1.2)

that is, a function that, given two patterns x and x�, returns a real number charac-
terizing their similarity. Unless stated otherwise, we will assume that k is symmet-
ric, that is, k(x� x�)� k(x�� x) for all x� x� � �. For reasons that will become clear later
(cf. Remark 2.16), the function k is called a kernel [359, 4, 42, 62, 223].
General similarity measures of this form are rather difficult to study. Let us

therefore start from a particularly simple case, and generalize it subsequently. A
simple type of similarity measure that is of particular mathematical appeal is a
dot product. For instance, given two vectors x� x� � �

N , the canonical dot product isDot Product
defined as

	x� x�
 :�
N

∑
i�1
[x]i[x�]i� (1.3)

Here, [x]i denotes the ith entry of x.
Note that the dot product is also referred to as inner product or scalar product, and

sometimes denoted with round brackets and a dot, as (x � x�) — this is where the
“dot” in the name comes from. In Section B.2, we give a general definition of dot
products. Usually, however, it is sufficient to think of dot products as (1.3).

latter is probably closer to the original meaning of the term, however we decided to stick
with the present usage, which is more common in the field of machine learning.
2. Doing this for every x � � amounts to estimating a function f : �� ��1�.



1.1 Data Representation and Similarity 3

The geometric interpretation of the canonical dot product is that it computes the
cosine of the angle between the vectors x and x�, provided they are normalized to
length 1. Moreover, it allows computation of the length (or norm) of a vector x asLength

�x� �
�
	x� x
� (1.4)

Likewise, the distance between two vectors is computed as the length of the
difference vector. Therefore, being able to compute dot products amounts to being
able to carry out all geometric constructions that can be formulated in terms of
angles, lengths and distances.
Note, however, that the dot product approach is not really sufficiently general

to deal with many interesting problems.

First, we have deliberately not made the assumption that the patterns actually
exist in a dot product space. So far, they could be any kind of object. In order to
be able to use a dot product as a similarity measure, we therefore first need to
represent the patterns as vectors in some dot product space � (which need not
coincide with � N ). To this end, we use a map

Φ : ���

x �� x :� Φ(x)� (1.5)

Second, even if the original patterns exist in a dot product space, we may still
want to consider more general similarity measures obtained by applying a map
(1.5). In that case, Φ will typically be a nonlinear map. An example that we will
consider in Chapter 2 is a map which computes products of entries of the input
patterns.

In both the above cases, the space � is called a feature space. Note that we haveFeature Space
used a bold face x to denote the vectorial representation of x in the feature space.
We will follow this convention throughout the book.
To summarize, embedding the data into� via Φ has three benefits:

1. It lets us define a similarity measure from the dot product in�,

k(x� x�) :� 	x� x�
 � 	Φ(x)�Φ(x�)
 � (1.6)

2. It allows us to deal with the patterns geometrically, and thus lets us study
learning algorithms using linear algebra and analytic geometry.

3. The freedom to choose the mapping Φ will enable us to design a large variety
of similarity measures and learning algorithms. This also applies to the situation
where the inputs xi already exist in a dot product space. In that case, we might
directly use the dot product as a similarity measure. However, nothing prevents us
from first applying a possibly nonlinear map Φ to change the representation into
one that is more suitable for a given problem. This will be elaborated in Chapter 2,
where the theory of kernels is developed in more detail.



4 A Tutorial Introduction

1.2 A Simple Pattern Recognition Algorithm

We are now in the position to describe a pattern recognition learning algorithm
that is arguably one of the simplest possible. We make use of the structure intro-
duced in the previous section; that is, we assume that our data are embedded into
a dot product space �.3 Using the dot product, we can measure distances in this
space. The basic idea of the algorithm is to assign a previously unseen pattern to
the class with closer mean.
We thus begin by computing the means of the two classes in feature space;

c� �
1
m�

∑
�i�yi��1�

xi� (1.7)

c� �
1
m�

∑
�i�yi��1�

xi� (1.8)

where m� and m� are the number of examples with positive and negative labels,
respectively. We assume that both classes are non-empty, thus m��m� � 0. We
assign a new point x to the class whose mean is closest (Figure 1.1). This geometric
construction can be formulated in terms of the dot product 	�� �
. Half way between
c� and c� lies the point c :� (c� � c�)�2. We compute the class of x by checking
whether the vector x� c connecting c to x encloses an angle smaller than ��2 with
the vectorw :� c� � c� connecting the class means. This leads to

y � sgn 	(x� c)�w


� sgn 	(x� (c� � c�)�2)� (c� � c�)


� sgn (	x� c�
 � 	x� c�
� b)� (1.9)

Here, we have defined the offset

b :�
1
2
(�c��2 ��c��2)� (1.10)

with the norm �x� :�
�
	x� x
. If the class means have the same distance to the

origin, then b will vanish.
Note that (1.9) induces a decision boundary which has the form of a hyperplane

(Figure 1.1); that is, a set of points that satisfy a constraint expressible as a linear
equation.
It is instructive to rewrite (1.9) in terms of the input patterns xi, using the kernel

k to compute the dot products. Note, however, that (1.6) only tells us how to
compute the dot products between vectorial representations xi of inputs xi. We
therefore need to express the vectors ci and w in terms of x1� � � � � xm.
To this end, substitute (1.7) and (1.8) into (1.9) to get the decision functionDecision

Function

3. For the definition of a dot product space, see Section B.2.


