
I CONCEPTS AND TOOLS

The generic can be more intense than the concrete.
J. L. Borges1

We now embark on a more systematic presentation of the concepts and tools
underlying Support Vector Machines and other kernel methods.
In machine learning problems, we try to discover structure in data. For in-

stance, in pattern recognition and regression estimation, we are given a training
set (x1� y1)� � � � � (xm� ym) � �� �, and attempt to predict the outputs y for previ-
ously unseen inputs x. This is only possible if we have some measure that tells us
how (x� y) is related to the training set. Informally, we want similar inputs to lead
to similar outputs.2 To formalize this, we have to state what we mean by similar.
A particularly simple yet surprisingly useful notion of similarity of inputs— the

one we will use throughout this book — derives from embedding the data into
a Euclidean feature space and utilizing geometrical concepts. Chapter 2 describes
how certain classes of kernels induce feature spaces, and how one can compute
dot products, and thus angles and distances, without having to explicitly work in
these potentially infinite-dimensional spaces. This leads to a rather general class
of similarity measure to be used on the inputs.

1. From A History of Eternity, in The Total Library, Penguin, London, 2001.
2. This procedure can be traced back to an old maxim of law: de similibus ad similia eadem
ratione procedendum est — from things similar to things similar we are to proceed by the
same rule.
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On the outputs, similarity is usually measured in terms of a loss function stating
how “bad” it is if the predicted y does not match the true one. The training
of a learning machine commonly involves a risk functional that contains a term
measuring the loss incurred for the training patterns. The concepts of loss and risk
are introduced in depth in Chapter 3.
This is not the full story, however. In order to generalize well to the test data,

it is not sufficient to “explain” the training data. It is also necessary to control
the complexity of the model used for explaining the training data, a task that is
often accomplishedwith the help of regularization terms, as explained in Chapter 4.
Specifically, one utilizes objective functions that involve both the empirical loss
term and a regularization term. From a statistical point of view, we can expect
the function minimizing a properly chosen objective function to work well on
test data, as explained by statistical learning theory (Chapter 5). From a practical
point of view, however, it is not at all straightforward to find this minimizer.
Indeed, the quality of a loss function or a regularizer should be assessed not only
on a statistical basis but also in terms of the feasibility of the objective function
minimization problem. In order to be able to assess this, and in order to obtain
a thorough understanding of practical algorithms for this task, we conclude this
part of the book with an in-depth review of optimization theory (Chapter 6).
The chapters in this part of the book assume familiarity with basic concepts

of linear algebra and probability theory. Readers who would like to refresh their
knowledge of these topics may want to consult Appendix B beforehand.


