Series Foreword

The goal of building systems that can adapt to their environments and learn from their experience has attracted researchers from many fields, including computer science, engineering, mathematics, physics, neuroscience, and cognitive science. Out of this research has come a wide variety of learning techniques that have the potential to transform many scientific and industrial fields. Recently, several research communities have converged on a common set of issues surrounding supervised, unsupervised, and reinforcement learning problems. The MIT Press series on Adaptive Computation and Machine Learning seeks to unify the many diverse strands of machine learning research and to foster high quality research and innovative applications.

Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond is an excellent illustration of this convergence of ideas from many fields. The development of kernel-based learning methods has resulted from a combination of machine learning theory, optimization algorithms from operations research, and kernel techniques from mathematical analysis. These three ideas have spread far beyond the original support-vector machine algorithm: Virtually every learning algorithm has been redesigned to exploit the power of kernel methods. Bernhard Schölkopf and Alexander Smola have written a comprehensive, yet accessible, account of these developments. This volume includes all of the mathematical and algorithmic background needed not only to obtain a basic understanding of the material but to master it. Students and researchers who study this book will be able to apply kernel methods in creative ways to solve a wide range of problems in science and engineering.

Thomas Dietterich


Last modified November 21, 2001