Notation and Symbols

R	the set of reals
N	the set of natural numbers $\mathbb{N} = \{1, 2\}$
x	the input domain
N	(used if χ is a vector space) dimension of χ
<i>x</i> ;	input patterns
V;	target values $y_i \in \mathbb{R}$, or (in pattern recognition) classes $y_i \in \{\pm 1\}$
m	number of training examples
[m]	compact notation for $\{1, \ldots, m\}$
i, j	indices, by default running over [<i>m</i>]
X	a sample of input patterns, $X = (x_1, \ldots, x_m)$
Ŷ	a sample of output targets, $Y = (y_1, \dots, y_m)$
\mathcal{H}	feature space
Φ	feature map, $\Phi: \mathfrak{X} \to \mathcal{H}$
\mathbf{x}_i	a vector with entries $[\mathbf{x}_i]_i$; usually a mapped pattern in \mathcal{H} , $\mathbf{x}_i = \Phi(x_i)$
W	weight vector in feature space
Ь	constant offset (or threshold)
k	(positive definite) kernel
Κ	kernel matrix or Gram matrix, $K_{ij} = k(x_i, x_j)$
Ε [ξ]	expectation of a random variable ξ (Section B.1.3)
$P\{\cdot\}$	probability of a logical formula
P(C)	probability of a set (event) C
p(x)	density evaluated at $x \in \mathfrak{X}$
$\mathbb{N}(\varepsilon, \mathcal{F}, d)$	covering number of a set $\mathcal F$ in the metric d with precision ε
$\mathfrak{N}(\mu,\sigma)$	normal distribution with mean μ and variance σ
ε	parameter of the ε -insensitive loss function
$lpha_i$	Lagrange multiplier or expansion coefficient
β_i	Lagrange multiplier
$oldsymbol{lpha},oldsymbol{eta}$	vectors of Lagrange multipliers
ξ_i	slack variables
ξ	vector of all slack variables
\cap	Lipping of a greeduatic grap grap

Q Hessian of a quadratic program

$\langle \mathbf{x}, \mathbf{x}' angle$	dot product between \mathbf{x} and \mathbf{x}'
•	2-norm, $\ \mathbf{x}\ \coloneqq \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$
$\ \cdot\ _p$	$p ext{-norm}$, $\ x\ _p \coloneqq \left(\sum_{i=1}^N x_i ^p ight)^{1/p}$, $N \in \mathbb{N} \cup \{\infty\}$
$\ \cdot\ _{\infty}$	∞ -norm, $\ x\ _{\infty} := \max_{i=1}^{N} x_i $ on \mathbb{R}^N , $\ x\ _{\infty} := \sup_{i=1}^{\infty} x_i $ on ℓ_{∞}
ln	logarithm to base <i>e</i>
\log_2	logarithm to base 2
f	a function $\mathfrak{X} \to \mathbb{R}$ or $\mathfrak{X} \to \{\pm 1\}$
F	a family of functions
$\rho_f(x, y)$	margin of function f on the example (x, y) , i.e., $y \cdot f(x)$
$ ho_f$	margin of <i>f</i> on the training set, i.e., $\min_{i=1}^{m} \rho_f(x_i, y_i)$
h	VC dimension
С	regularization parameter in front of the empirical risk term
λ	regularization parameter in front of the regularizer
$x \in [a, b]$	interval $a \le x \le b$
$x \in (a, b]$	interval $a < x \le b$
$x \in (a, b)$	interval $a < x < b$
A^{-1}	inverse matrix (in some cases, pseudo-inverse)
$A^ op$	transposed matrix (or vector)
A^*	adjoint matrix (or: operator, vector),
	i.e., transposed and complex conjugate
$(x_j)_j$ or (x_j)	shorthand for a sequence $(x_j) = (x_1, x_2,)$
ℓ_p	sequence spaces, $1 \le p \le \infty$ (Section B.3.1)
$L_p(\mathfrak{X})$	function spaces, $1 \le p \le \infty$ (Section B.3.1)
I_A	characteristic (or indicator) function on a set A
	i.e., $I_A(x) = 1$ if $x \in A$ and 0 otherwise
1	unit matrix, or identity map $(1(x) = x \text{ for all } x)$
C	cardinality of a set <i>C</i> (for finite sets, the number of elements)
Ŷ	regularization operator
δ_{ij}	Kronecker δ (Section B.2.1)
δ_x	Dirac δ , satisfying $\int \delta_x(y) f(y) dy = f(x)$
O(g(n))	a function $f(n)$ is said to be $O(g(n))$ if there exists a constant C
	such that $ f(n) \leq Cg(n)$ for all n
o(g(n))	a function is said to be $o(g(n))$ if there exists a constant c
	such that $ f(n) \ge cg(n)$ for all n
rhs/lhs	shorthand for "right/left hand side"
•	the end of a proof
•	easy problem
••	intermediate problem
•••	difficult problem
000	open problem

626