Notation and Symbols

\mathbb{R}	the set of reals
\mathbb{N}	the set of natural numbers, $\mathbb{N}=\{1,2, \ldots\}$
x	the input domain
N	(used if X is a vector space) dimension of X
x_{i}	input patterns
y_{i}	target values $y_{i} \in \mathbb{R}$, or (in pattern recognition) classes $y_{i} \in\{ \pm 1\}$
m	number of training examples
[m]	compact notation for $\{1, \ldots, m\}$
i, j	indices, by default running over [m]
X	a sample of input patterns, $X=\left(x_{1}, \ldots, x_{m}\right)$
Y	a sample of output targets, $Y=\left(y_{1}, \ldots, y_{m}\right)$
\mathcal{H}	feature space
Φ	feature map, $\Phi: \mathcal{X} \rightarrow \mathcal{H}$
x_{i}	a vector with entries $\left[\mathbf{x}_{i}\right]_{j}$; usually a mapped pattern in $\mathcal{H}, \mathbf{x}_{i}=\Phi\left(x_{i}\right)$
w	weight vector in feature space
b	constant offset (or threshold)
k	(positive definite) kernel
K	kernel matrix or Gram matrix, $\mathrm{K}_{i j}=k\left(x_{i}, x_{j}\right)$
E[${ }^{\text {] }}$	expectation of a random variable ξ (Section B.1.3)
P $\{\cdot\}$	probability of a logical formula
$\mathrm{P}(\mathrm{C})$	probability of a set (event) C
$p(x)$	density evaluated at $x \in \mathcal{X}$
$\mathcal{N}(\varepsilon, \mathcal{F}, d)$	covering number of a set \mathcal{F} in the metric d with precision ε
$\mathcal{N}(\mu, \sigma)$	normal distribution with mean μ and variance σ
ε	parameter of the ε-insensitive loss function
α_{i}	Lagrange multiplier or expansion coefficient
β_{i}	Lagrange multiplier
$\boldsymbol{\alpha}, \boldsymbol{\beta}$	vectors of Lagrange multipliers
ξ_{i}	slack variables
ξ	vector of all slack variables
Q	Hessian of a quadratic program

$\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle$	dot product between \mathbf{x} and \mathbf{x}^{\prime}						
$\\|\cdot\\|$	2-norm, $\\|\mathbf{x}\\|:=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$						
$\\|\cdot\\|_{p}$	p-norm, $\\|x\\|_{p}:=\left(\sum_{i=1}^{N}\left\|x_{i}\right\|^{p}\right)^{1 / p}, N \in \mathbb{N} \cup\{\infty\}$						
$\\|\cdot\\|_{\infty}$	∞-norm , $\\|x\\|_{\infty}:=\max _{i=1}^{N}\left\|x_{i}\right\|$ on $\mathbb{R}^{N},\\|x\\|_{\infty}:=\sup _{i=1}^{\infty}\left\|x_{i}\right\|$ on ℓ_{∞}						
1 n	logarithm to base e						
$\log _{2}$	logarithm to base 2						
f	a function $X \rightarrow \mathbb{R}$ or $X \rightarrow\{ \pm 1\}$						
\mathcal{F}	a family of functions						
$\rho_{f}(x, y)$	margin of function f on the example (x, y), i.e., $y \cdot f(x)$						
ρ_{f}	margin of f on the training set, i.e., $\min _{i=1}^{m} \rho_{f}\left(x_{i}, y_{i}\right)$						
h	VC dimension						
C	regularization parameter in front of the empirical risk term						
λ	regularization parameter in front of the regularizer						
$x \in[a, b]$	interval $a \leq x \leq b$						
$x \in(a, b]$	interval $a<x \leq b$						
$x \in(a, b)$	interval $a<x<b$						
A^{-1}	inverse matrix (in some cases, pseudo-inverse)						
A^{\top}	transposed matrix (or vector)						
A^{*}	adjoint matrix (or: operator, vector),						
	i.e., transposed and complex conjugate						
$\left(x_{j}\right)_{j}$ or $\left(x_{j}\right)$	shorthand for a sequence $\left(x_{j}\right)=\left(x_{1}, x_{2}, \ldots\right)$						
ℓ_{p}	sequence spaces, $1 \leq p \leq \infty$ (Section B.3.1)						
$L_{p}(X)$	function spaces, $1 \leq p \leq \infty$ (Section B.3.1)						
I_{A}	characteristic (or indicator) function on a set A i.e., $I_{A}(x)=1$ if $x \in A$ and 0 otherwise						
1	unit matrix, or identity map ($\mathbf{1}(x)=x$ for all x)						
\|C		cardinality of a set C (for finite sets, the number of elements)					
\bigcirc	regularization operator						
$\delta_{i j}$	Kronecker δ (Section B.2.1)						
δ_{x}	Dirac δ, satisfying $\int \delta_{x}(y) f(y) d y=f(x)$						
$O(g(n))$	a function $f(n)$ is said to be $O(g(n))$ if there exists a constant C such that $\|f(n)\| \leq C g(n)$ for all n						
$o(g(n))$	a function is said to be $o(g(n))$ if there exists a constant c such that $\|f(n)\| \geq \operatorname{cg}(n)$ for all n						
rhs/lhs	shorthand for "right/left hand side"						
-	the end of a proof						
\bullet	easy problem						
$\bullet \bullet$	intermediate problem						
$\bullet \bullet \bullet$	difficult problem						
000	open problem						

