Notation and Symbols

- \(\mathbb{R} \) the set of reals
- \(\mathbb{N} \) the set of natural numbers, \(\mathbb{N} = \{1, 2, \ldots\} \)
- \(\mathcal{X} \) the input domain
- \(N \) (used if \(\mathcal{X} \) is a vector space) dimension of \(\mathcal{X} \)
- \(x_i \) input patterns
- \(y_i \) target values \(y_i \in \mathbb{R} \), or (in pattern recognition) classes \(y_i \in \{\pm 1\} \)
- \(m \) number of training examples
- \([m] \) compact notation for \(\{1, \ldots, m\} \)
- \(i, j \) indices, by default running over \([m]\)
- \(\mathcal{X} \) a sample of input patterns, \(\mathcal{X} = (x_1, \ldots, x_m) \)
- \(\mathcal{Y} \) a sample of output targets, \(\mathcal{Y} = (y_1, \ldots, y_m) \)
- \(\mathcal{H} \) feature space
- \(\Phi \) feature map, \(\Phi : \mathcal{X} \rightarrow \mathcal{H} \)
- \(x_i \) a vector with entries \([x_i]_j \); usually a mapped pattern in \(\mathcal{H} \), \(x_i = \Phi(x_i) \)
- \(w \) weight vector in feature space
- \(b \) constant offset (or threshold)
- \(k \) (positive definite) kernel
- \(K \) kernel matrix or Gram matrix, \(K_{ij} = k(x_i, x_j) \)
- \(\mathbb{E}[\xi] \) expectation of a random variable \(\xi \) (Section B.1.3)
- \(P(\cdot) \) probability of a logical formula
- \(P(C) \) probability of a set (event) \(C \)
- \(p(x) \) density evaluated at \(x \in \mathcal{X} \)
- \(\mathcal{N}(\varepsilon, \mathcal{F}, d) \) covering number of a set \(\mathcal{F} \) in the metric \(d \) with precision \(\varepsilon \)
- \(\mathcal{N}(\mu, \sigma) \) normal distribution with mean \(\mu \) and variance \(\sigma \)
- \(\varepsilon \) parameter of the \(\varepsilon \)-insensitive loss function
- \(\alpha_i \) Lagrange multiplier or expansion coefficient
- \(\beta_i \) Lagrange multiplier
- \(\alpha, \beta \) vectors of Lagrange multipliers
- \(\xi_i \) slack variables
- \(\xi \) vector of all slack variables
- \(Q \) Hessian of a quadratic program
\[\langle \mathbf{x}, \mathbf{x}' \rangle \] dot product between \(\mathbf{x} \) and \(\mathbf{x}' \)

\[\| \cdot \| \] 2-norm, \(\| \mathbf{x} \| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \)

\[\| \cdot \|_p \] \(p \)-norm, \(\| \mathbf{x} \|_p := \left(\sum_{i=1}^{N} |x_i|^p \right)^{1/p} \), \(N \in \mathbb{N} \cup \{ \infty \} \)

\[\| \cdot \|_\infty \] \(\infty \)-norm, \(\| \mathbf{x} \|_\infty := \max_{1 \leq i \leq N} |x_i| \) on \(\mathbb{R}^N \), \(\| \mathbf{x} \|_\infty := \sup_{1 \leq i \leq N} |x_i| \) on \(\ell_\infty \)

\[\ln \] logarithm to base \(e \)

\[\log_2 \] logarithm to base 2

\[f \] a function \(\mathcal{X} \rightarrow \mathbb{R} \) or \(\overline{\mathcal{X}} \rightarrow \{\pm 1\} \)

\(\mathcal{F} \) a family of functions

\(\rho_f(x, y) \) margin of function \(f \) on the example \((x, y) \), i.e., \(y \cdot f(x) \)

\(\rho_f \) margin of \(f \) on the training set, i.e., \(\min_{i=1}^{n} \rho_f(x_i, y_i) \)

\(h \) VC dimension

\(C \) regularization parameter in front of the empirical risk term

\(\lambda \) regularization parameter in front of the regularizer

\(x \in [a, b] \) interval \(a \leq x \leq b \)

\(x \in (a, b] \) interval \(a < x \leq b \)

\(x \in (a, b) \) interval \(a < x < b \)

\(A^{-1} \) inverse matrix (in some cases, pseudo-inverse)

\(A^\top \) transposed matrix (or vector)

\(A^* \) adjoint matrix (or: operator, vector),

i.e., transposed and complex conjugate

\((x_j) \), or \((x_j) \) shorthand for a sequence \((x_j) = (x_1, x_2, \ldots) \)

\(\ell_p \) sequence spaces, \(1 \leq p \leq \infty \) (Section B.3.1)

\(L_p(\mathcal{X}) \) function spaces, \(1 \leq p \leq \infty \) (Section B.3.1)

\(I_A \) characteristic (or indicator) function on a set \(A \)

i.e., \(I_A(x) = 1 \) if \(x \in A \) and 0 otherwise

\(1 \) unit matrix, or identity map \((1(x) = x \) for all \(x \) \)

\(|C| \) cardinality of a set \(C \) (for finite sets, the number of elements)

\(\gamma \) regularization operator

\(\delta_{ij} \) Kronecker \(\delta \) (Section B.2.1)

\(\delta_x \) Dirac \(\delta \), satisfying \(\int \delta_x(y) f(y) dy = f(x) \)

\(O(g(n)) \) a function \(f(n) \) is said to be \(O(g(n)) \) if there exists a constant \(C \)

such that \(|f(n)| \leq Cg(n) \) for all \(n \)

\(o(g(n)) \) a function is said to be \(o(g(n)) \) if there exists a constant \(c \)

such that \(|f(n)| \leq cg(n) \) for all \(n \)

\(\text{rhs/lhs} \) shorthand for “right/left hand side”

\(\bullet \) the end of a proof

\(\bullet \) easy problem

\(\bullet \bullet \) intermediate problem

\(\bullet \bullet \bullet \) difficult problem

\(\bullet \bullet \bullet \bullet \bullet \bullet \) open problem