Pattern Recognition

This chapter is devoted to a detailed description of SV classification (SVC) methods. We have already briefly visited the SVC algorithm in Chapter 1. There will be some overlap with that chapter, but here we give a more thorough treatment.

We start by describing the classifier that forms the basis for SVC, the separating hyperplane (Section 7.1). Separating hyperplanes can differ in how large a margin of separation they induce between the classes, with corresponding consequences on the generalization error, as discussed in Section 7.2. The "optimal" margin hyperplane is defined in Section 7.3, along with a description of how to compute it. Using the kernel trick of Chapter 2, we generalize to the case where the optimal margin hyperplane is not computed in input space, but in a feature space nonlinearly related to the latter (Section 7.4). This dramatically increases the applicability of the approach, as does the introduction of slack variables to deal with outliers and noise in the data (Section 7.5). Many practical problems require us to classify the data into more than just two classes. Section 7.6 describes how multi-class SV classification systems can be built. Following this, Section 7.7 describes some variations on standard SV classification algorithms, differing in the regularizers and constraints that are used. We conclude with a fairly detailed section on experiments and applications (Section 7.8).

Prerequisites This chapter requires basic knowledge of kernels, as conveyed in the first half of Chapter 2. To understand details of the optimization problems, it is helpful (but not indispensable) to get some background from Chapter 6. To understand the connections to learning theory, in particular regarding the statistical basis of the regularizer used in SV classification, it would be useful to have read Chapter 5.

7.1 Separating Hyperplanes

Suppose we are given a dot product space \mathcal{H} , and a set of pattern vectorsHyperplane $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathcal{H}$. Any hyperplane in \mathcal{H} can be written as $\{\mathbf{x} \in \mathcal{H} | \langle \mathbf{w}, \mathbf{x} \rangle + b = 0\}, \ \mathbf{w} \in \mathcal{H}, b \in \mathbb{R}.$ (7.1)

In this formulation, **w** is a vector orthogonal to the hyperplane: If **w** has unit length, then $\langle \mathbf{w}, \mathbf{x} \rangle$ is the length of **x** along the direction of **w** (Figure 7.1). For general **w**, this number will be scaled by $\|\mathbf{w}\|$. In any case, the set (7.1) consists

Overview