
6 Optimization

This chapter provides a self-contained overview of some of the basic tools needed
to solve the optimization problems used in kernel methods. In particular, we will
cover topics such as minimization of functions in one variable, convex minimiza-
tion and maximization problems, duality theory, and statistical methods to solve
optimization problems approximately.
The focus is noticeably different from the topics covered in works on optimiza-

tion for Neural Networks, such as Backpropagation [588, 452, 317, 7] and its vari-
ants. In these cases, it is necessary to deal with non-convex problems exhibiting a
large number of local minima, whereas much of the research on Kernel Methods
and Mathematical Programming is focused on problems with global exact solu-
tions. These boundaries may become less clear-cut in the future, but at the present
time, methods for the solution of problems with unique optima appear to be suffi-
cient for our purposes.
In Section 6.1, we explain general properties of convex sets and functions, andOverview

how the extreme values of such functions can be found. Next, we discuss practical
algorithms to best minimize convex functions on unconstrained domains (Section
6.2). In this context, we will present techniques like interval cutting methods,
Newton’s method, gradient descent and conjugate gradient descent. Section 6.3
then deals with constrained optimization problems, and gives characterization
results for solutions. In this context, Lagrangians, primal and dual optimization
problems, and the Karush-Kuhn-Tucker (KKT) conditions are introduced. These
concepts set the stage for Section 6.4, which presents an interior point algorithm
for the solution of constrained convex optimization problems. In a sense, the final
section (Section 6.5) is a departure from the previous topics, since it introduces
the notion of randomization into the optimization procedures. The basic idea is
that unless the exact solution is required, statistical tools can speed up search
maximization by orders of magnitude.
For a general overview, we recommend Section 6.1, and the first parts of Sec-

tion 6.3, which explain the basic ideas underlying constrained optimization. The
latter section is needed to understand the calculations which lead to the dual opti-
mization problems in Support Vector Machines (Chapters 7–9). Section 6.4 is only
intended for readers interested in practical implementations of optimization al-
gorithms. In particular, Chapter 10 will require some knowledge of this section.
Finally, Section 6.5 describes novel randomization techniques, which are needed
in the sparse greedy methods of Section 10.2, 15.3, 16.4, and 18.4.3. Unconstrained
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optimization problems (Section 6.2) are less common in this book and will only
be required in the gradient descent methods of Section 10.6.1, and the Gaussian
Process implementation methods of Section 16.4.
The present chapter is intended as an introduction to the basic concepts of

optimization. It is relatively self-contained, and requires only basic skills in linearPrerequisites
algebra and multivariate calculus. Section 6.3 is somewhat more technical, Section
6.4 requires some additional knowledge of numerical analysis, and Section 6.5
assumes some knowledge of probability and statistics.

6.1 Convex Optimization

In the situations considered in this book, learning (or equivalently statistical es-
timation) implies the minimization of some risk functional such as Remp[ f ] or
Rreg[ f ] (cf. Chapter 4). While minimizing an arbitrary function on a (possibly not
even compact) set of arguments can be a difficult task, and will most likely exhibit
many local minima, minimization of a convex objective function on a convex set
exhibits exactly one globalminimum. We now prove this property.

Definition 6.1 (Convex Set) A set X in a vector space is called convex if for any x� x� �
X and any � � [0� 1], we have

�x� (1� �)x� � X� (6.1)
Definition and
Construction of
Convex Sets and
Functions

Definition 6.2 (Convex Function) A function f defined on a set X (note that X need
not be convex itself) is called convex if, for any x� x� � X and any � � [0� 1] such that
�x� (1� �)x� � X, we have

f (�x� (1� �)x�) � � f (x)� (1� �) f (x�)� (6.2)

A function f is called strictly convex if for x �� x� and � � (0� 1) (6.2) is a strict inequality.
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Figure 6.1 Left: Convex Function in two variables. Right: the corresponding convex level
sets �x� f (x) � c�, for different values of c.

There exist several ways to define convex sets. A convenient method is to define
them via below sets of convex functions, such as the sets for which f (x) � c, for
instance.

Lemma 6.3 (Convex Sets as Below-Sets) Denote by f : �� � a convex function on
a convex set �. Then the set

X :� �x�x � � and f (x) � c�� for all c � � � (6.3)

is convex.

Proof We must show condition (6.1). For any x� x� � �, we have f (x)� f (x�) � c.
Moreover, since f is convex, we also have

f (�x� (1� �)x�) � � f (x)� (1� �) f (x�) � c for all � � [0� 1]� (6.4)

Hence, for all � � [0� 1], we have (�x� (1� �)x�) � X, which proves the claim.
Figure 6.1 depicts this situation graphically.

Lemma 6.4 (Intersection of Convex Sets) Denote by X�X�	� two convex sets. Then
X 
 X� is also a convex set.

Intersections

Proof Given any x� x� � X 
 X�, then for any � � [0� 1], the point x� :� �x� (1�
�)x� satisfies x� � X and x� � X�, hence also x� � X 
 X�.

See also Figure 6.2. Now we have the tools to prove the central theorem of this
section.

Theorem 6.5 (Minima on Convex Sets) If the convex function f : �� � has a min-
imum on a convex set X 	 �, then its arguments x � �, for which the minimum value
is attained, form a convex set. Moreover, if f is strictly convex, then this set will contain
only one element.
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Figure 6.2 Left: a convex set; observe that lines with points in the set are fully contained
inside the set. Right: the intersection of two convex sets is also a convex set.

f(x)

a b x

Figure 6.3 Note that the maximum
of a convex function is obtained at
the ends of the interval [a� b].

Proof Denote by c theminimumof f on X. Then the set Xm :� �x�x�� and f (x)�
c� is clearly convex. In addition, Xm 
 X is also convex, and f (x) � c for all
x � Xm 
 X (otherwise c would not be the minimum).
If f is strictly convex, then for any x� x� � X, and in particular for any x� x� �

X 
 Xm, we have (for x �� x� and all � � (0� 1)),

f (�x� (1� �)x�) � � f (x)� (1� �) f (x�) � �c� (1� �)c � c� (6.5)

This contradicts the assumption that Xm 
 X contains more then one element.

A simple application of this theorem is in constrained convexminimization. Recall
that the notation [n], used below, is a shorthand for �1� � � � �n�.Global Minima

Corollary 6.6 (Constrained Convex Minimization) Given the set of convex func-
tions f � c1� � � � � cn on the convex set �, the problem

minimize
x

f (x)�

subject to ci(x) � 0 for all i � [n]�
(6.6)

has as its solution a convex set, if a solution exists. This solution is unique if f is strictly
convex.

Many problems in Mathematical Programming or Support Vector Machines can
be cast into this formulation. This means either that they all have unique solutions
(if f is strictly convex), or that all solutions are equally good and form a convex set
(if f is merely convex).
We might ask what can be said about convex maximization. Let us analyze a

simple case first: convex maximization on an interval.
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Lemma 6.7 (Convex Maximization on an Interval) Denote by f a convex function
on [a� b] � � . Then the problem of maximizing f on [a� b] has f (a) and f (b) as solutions.

Maxima on
Extreme Points Proof Any x � [a� b] can be written as b�xb�a a�

�
1� b�x

b�a

�
b, and hence

f (x)�
b� x
b� a

f (a)�
�
1�

b� x
b� a

�
f (b) �max( f (a)� f (b))� (6.7)

Therefore the maximum of f on [a� b] is obtained on one of the points a� b.

We will next show that the problem of convex maximization on a convex set is
typically a hard problem, in the sense that the maximum can only be found at one
of the extreme points of the constraining set. We must first introduce the notion of
vertices of a set.

Definition 6.8 (Vertex of a Set) A point x � X is a vertex of X if, for all x� � X with
x� �� x, and for all � � 1, the point �x� (1� �)x� �� X.

This definition implies, for instance, that in the case of X being an �2 ball, the
vertices of X make up its surface. In the case of an �� ball, we have 2n vertices in
n dimensions, and for an �1 ball, we have only 2n of them. These differences will
guide us in the choice of admissible sets of parameters for optimization problems
(see, e.g., Section 14.4). In particular, there exists a connection between suprema
on sets and their convex hulls. To state this link, however, we need to define the
latter.

Definition 6.9 (Convex Hull) Denote by X a set in a vector space. Then the convex hull
coX is defined as

coX :�

�
x̄

�����x̄ �
n

∑
i�1

�ixi where n � � � �i � 0 and
n

∑
i�1

�i � 1

�
� (6.8)

Theorem 6.10 (Suprema on Sets and their Convex Hulls) Denote by X a set and by
coX its convex hull. Then for a convex function f

sup� f (x)�x � X� � sup� f (x)�x � coX�� (6.9)
Evaluating
Convex Sets on
Extreme Points

Proof Recall that the below set of convex functions is convex (Lemma 6.3), and
that the below set of f with respect to c � sup� f (x)�x � X� is by definition a
superset of X. Moreover, due to its convexity, it is also a superset of coX.

This theorem can be used to replace search operations over sets X by subsets
X� 	 X, which are considerably smaller, if the convex hull of the latter generates
X. In particular, the vertices of convex sets are sufficient to reconstruct the whole
set.

Theorem 6.11 (Vertices) A compact convex set is the convex hull of its vertices.
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Figure 6.4 A convex function on a convex
polyhedral set. Note that theminimum of this
function is unique, and that the maximum
can be found at one of the vertices of the con-
straining domain.

Reconstructing
Convex Sets from
Vertices

The proof is slightly technical, and not central to the understanding of kernel
methods. See Rockafellar [435, Chapter 18] for details, alongwith further theorems
on convex functions. We now proceed to the second key theorem in this section.

Theorem 6.12 (Maxima of Convex Functions on Convex Compact Sets) Denote
by X a compact convex set in �, by �X the vertices of X, and by f a convex function
on X. Then

sup� f (x)�x � X� � sup� f (x)�x � �X�� (6.10)

Proof Application of Theorem 6.10 and Theorem 6.11 proves the claim, since
under the assumptions made on X, we have X � co (�X). Figure 6.4 depicts the
situation graphically.

6.2 Unconstrained Problems

After the characterization and uniqueness results (Theorem 6.5, Corollary 6.6, and
Lemma 6.7) of the previous section, we will now study numerical techniques to
obtain minima (or maxima) of convex optimization problems. While the choice
of algorithms is motivated by applicability to kernel methods, the presentation
here is not problem specific. For details on implementation, and descriptions of
applications to learning problems, see Chapter 10.

6.2.1 Functions of One Variable

We begin with the easiest case, in which f depends on only one variable. Some of
the concepts explained here, such as the interval cutting algorithm and Newton’s
method, can be extended to the multivariate setting (see Problem 6.5). For the sake
of simplicity, however, we limit ourselves to the univariate case.
Assume we want to minimize f : � � � on the interval [a� b] 	 � . If we cannot

make any further assumptions regarding f , then this problem, as simple as it may
seem, cannot be solved numerically.
If f is differentiable, the problem can be reduced to finding f �(x) � 0 (see Prob-Continuous

Differentiable
Functions

lem 6.4 for the general case). If in addition to the previous assumptions, f is con-
vex, then f � is nondecreasing, and we can find a fast, simple algorithm (Algorithm
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Figure 6.5 Interval Cutting Algorithm. The selection of points is ordered according to the
numbers beneath (points 1 and 2 are the initial endpoints of the interval).

Algorithm 6.1 Interval Cutting

Require: a� b� Precision �

Set A � a� B � b
repeat
if f �

�
A�B
2

�
� 0 then

B � A�B
2

else
A � A�B

2
end if

until (B� A)min(� f �(A)�� � f �(B)�)� �

Output: x � A�B
2

6.1) to solve our problem (see Figure 6.5).Interval Cutting
This technique works by halving the size of the interval that contains the min-

imum x� of f , since it is always guaranteed by the selection criteria for B and A
that x� � [A� B]. We use the following Taylor series expansion to determine the
stopping criterion.

Theorem 6.13 (Taylor Series) Denote by f : � � � a function that is d times differen-
tiable. Then for any x� x� � � , there exists a � with ��� � �x� x��, such that

f (x�) �
d�1

∑
i�0

1
i!
f (i)(x)(x�� x)i �

�d

d!
f (d)(x� �)� (6.11)

Now we may apply (6.11) to the stopping criterion of Algorithm 6.1. We denote
by x� the minimum of f (x). Expanding f around f (x�), we obtain for some �A �
[A� x�� 0] that f (A) � f (x�)� �A f �(x�� �A), and therefore,

� f (A)� f (x�)� � ��A�� f �(x�� �A)� � (B� A)� f �(A)��

Taking the minimum over �A� B� shows that Algorithm 6.1 stops once f is 	-closeProof of Linear
Convergence to its minimal value. The convergence of the algorithm is linear with constant 0�5,

since the intervals [A� B] for possible x� are halved at each iteration.
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Algorithm 6.2Newton’s Method
Require: x0, Precision �

Set x � x0
repeat
x � x� f �(x)

f ��(x)
until � f �(x)� � �

Output: x

In constructing the interval cutting algorithm, we in fact wasted most of the
information obtained in evaluating f � at each point, by only making use of the
sign of f . In particular, we could fit a parabola to f and thereby obtain a method
that converges more rapidly. If we are only allowed to use f and f �, this leads to
theMethod of False Position (see [334] or Problem 6.3).
Moreover, if we may compute the second derivative as well, we can use (6.11) to

obtain a quadratic approximation of f and use the latter to find the minimum of f .
This is commonly referred to as Newton’s method (see Section 16.4.1 for a practicalNewton’s

Method application of the latter to classification problems). We expand f (x) around x0;

f (x) � f (x0)� (x� x0) f �(x0)�
(x� x0)2

2
f ��(x0)� (6.12)

Minimization of the expansion (6.12) yields

x � x0�
f �(x0)
f ��(x0)

� (6.13)

Hence, we hope that if the approximation (6.12) is good, we will obtain an algo-
rithm with fast convergence (Algorithm 6.2). Let us analyze the situation in more
detail. For convenience, we state the result in terms of g :� f �, since finding a zero
of g is equivalent to finding a minimum of f .

Theorem 6.14 (Convergence of Newton Method) Let g : � � � be a twice continu-
ously differentiable function, and denote by x� � � a point with g�(x�) �� 0 and g(x�)� 0.
Then, provided x0 is sufficiently close to x�, the sequence generated by (6.13) will converge
to x� at least quadratically.Quadratic

Convergence
Proof For convenience, denote by xn the value of x at the nth iteration. As before,
we apply Theorem 6.13. We now expand g(x�) around xn. For some � � [0� x�� xn],
we have

g(xn) � g(xn)� g(x�) � g(xn)�
�
g(xn)� g�(xn)(x�� xn)�

�2

2
g��(xn)

	
� (6.14)

and therefore by substituting (6.14) into (6.13),

xn�1� x� � xn � x��
g(xn)
g�(xn)

� �2
g��(xn)
2g�(xn)

� (6.15)

Since by construction ��� � �xn � x��, we obtain a quadratically convergent algo-
rithm in �xn� x��, provided that

���(xn � x�) g��(xn)
2g�(xn)

��� � 1.
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Region of
Convergence

In other words, if the Newton method converges, it converges more rapidly than
interval cutting or similar methods. We cannot guarantee beforehand that we are
really in the region of convergence of the algorithm. In practice, if we apply
the Newton method and find that it converges, we know that the solution has
converged to theminimizer of f . Formore information on optimization algorithms
for unconstrained problems see [173, 530, 334, 15, 159, 45].
In some cases we will not know an upper bound on the size of the interval to be

analyzed for the presence of minima. In this situation we may, for instance, startLine Search
with an initial guess of an interval, and if no minimum can be found strictly inside
the interval, enlarge it, say by doubling its size. See [334] for more information on
this matter. Let us now proceed to a technique which is quite popular (albeit not
always preferable) in machine learning.

6.2.2 Functions of Several Variables: Gradient Descent

Gradient descent is one of the simplest optimization techniques to implement for
minimizing functions of the form f : �� � , where � may be � N , or indeed any
set on which a gradient may be defined and evaluated. In order to avoid further
complications we assume that the gradient f �(x) exists and that we are able to
compute it.
The basic idea is as follows: given a location xn at iteration n, compute the

gradient gn :� f �(xn), and updateDirection of
Steepest Descent

xn�1 � xn � 
gn (6.16)

such that the decrease in f is maximal over all 
 � 0. For the final step, one of the
algorithms from Section 6.2.1 can be used. It is straightforward to show that f (xn)
is a monotonically decreasing series, since at each step the line search updates xn�1
in such a way that f (xn�1) � f (xn). Such a value of 
 must exist, since (again by
Theorem 6.13) we may expand f (xn � 
gn) in terms of 
 around xn, to obtain1

f (xn� 
gn) � f (xn)� 

gn
2 � O(
2)� (6.17)

As usual 
 � 
 is the Euclidean norm. For small 
 the linear contribution in the
Taylor expansion will be dominant, hence for some 
 � 0 we have f (xn � 
gn) �
f (xn). It can be shown [334] that after a (possibly infinite) number of steps, gradient
descent (see Algorithm 6.3) will converge.Problems of

Convergence In spite of this, the performance of gradient descent is far from optimal. De-
pending on the shape of the landscape of values of f , gradient descent may take
a long time to converge. Figure 6.6 shows two examples of possible convergence
behavior of the gradient descent algorithm.

1. To see that Theorem 6.13 applies in (6.17), note that f (xn � �gn) is a mapping � � �

when viewed as a function of �.
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Algorithm 6.3 Gradient Descent
Require: x0, Precision �

n � 0
repeat
Compute g � f �(xn)
Perform line search on f (xn � �g) for optimal �.
xn�1 � xn � �g
n � n� 1

until � f �(xn)� � �

Output: xn

Figure 6.6 Left: Gradient descent takes a long time to converge, since the landscape of
values of f forms a long and narrow valley, causing the algorithm to zig-zag along the
walls of the valley. Right: due to the homogeneous structure of the minimum, the algorithm
converges after very few iterations. Note that in both cases, the next direction of descent is
orthogonal to the previous one, since line search provides the optimal step length.

6.2.3 Convergence Properties of Gradient Descent

Let us analyze the convergence properties of Algorithm 6.3 in more detail. To keep
matters simple, we assume that f is a quadratic function, i.e.

f (x) �
1
2
(x� x�)�K(x� x�)� c0� (6.18)

where K is a positive definite symmetric matrix (cf. Definition 2.4) and c0 is
constant.2 This is clearly a convex function with minimum at x�, and f (x�) � c0.
The gradient of f is given by

g :� f �(x) � K(x� x�)� (6.19)

To find the update of the steepest descent we have to minimize

f (x� 
g)�
1
2
(x� 
g� x�)K(x� 
g� x�) �

1
2

2g�Kg� 
g�g� (6.20)

2. Note that we may rewrite (up to a constant) any convex quadratic function f (x) �
x�Kx� c�x� d in the form (6.18), simply by expanding f around its minimum value x�.


