Overview

Risk and Loss Functions

One of the most immediate requirements in any learning problem is to specify
what exactly we would like to achieve, minimize, bound, or approximate. In other
words, we need to determine a criterion according to which we will assess the
quality of an estimate f : X' — Y obtained from data.

This question is far from trivial. Even in binary classification there exist ample
choices. The selection criterion may be the fraction of patterns classified correctly,
it could involve the confidence with which the classification is carried out, or it
might take into account the fact that losses are not symmetric for the two classes,
such as in health diagnosis problems. Furthermore, the loss for an error may be
input-dependent (for instance, meteorological predictions may require a higher ac-
curacy in urban regions), and finally, we might want to obtain probabilities rather
than a binary prediction of the class labels —1 and 1. Multi class discrimination and
regression add even further levels of complexity to the problem. Thus we need a
means of encoding these criteria.

The chapter is structured as follows: in Section 3.1, we begin with a brief
overview of common loss functions used in classification and regression algo-
rithms. This is done without much mathematical rigor or statistical justification,
in order to provide basic working knowledge for readers who want to get a quick
idea of the default design choices in the area of kernel machines. Following this,
Section 3.2 formalizes the idea of risk. The risk approach is the predominant tech-
nique used in this book, and most of the algorithms presented subsequently mini-
mize some form of a risk functional. Section 3.3 treats the concept of loss functions
from a statistical perspective, points out the connection to the estimation of den-
sities and introduces the notion of efficiency. Readers interested in more detail
should also consider Chapter 16, which discusses the problem of estimation from
a Bayesian perspective. The later parts of this section are intended for readers in-
terested in the more theoretical details of estimation. The concept of robustness is
introduced in Section 3.4. Several commonly used loss functions, such as Huber’s
loss and the e-insensitive loss, enjoy robustness properties with respect to rather
general classes of distributions. Beyond the basic relations, will show how to ad-
just the e-insensitive loss in such a way as to accommodate different amounts of
variance automatically. This will later lead to the construction of so-called v Sup-
port Vector Algorithms (see Chapters 7, 8, and 9).

While technical details and proofs can be omitted for most of the present chap-
ter, we encourage the reader to review the practical implications of this section.
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Prerequisites

Risk and Loss Functions

3.1.1 Classification

3.2 Empirical 3.3.1 Maximum Likelihood ]
Risk Functional

[ 3.4 Robustness 332 Efficiency]

3.4.3, 3.4.4 Adaptive 3.4.2 e—insensitive loss ]
Loss functions & v

As usual, exercises for all sections can be found at the end. The chapter requires
knowledge of probability theory, as introduced in Section B.1.

3.1.2 Regression

3.1 Loss Functions

Minimized Loss
# Incurred Loss

Misclassification
Error

Let us begin with a formal definition of what we mean by the loss incurred by a
function f at location x, given an observation y.

Definition 3.1 (Loss Function) Denote by (x,y, f(x)) € X x Y x Y the triplet consist-
ing of a pattern x, an observation y and a prediction f(x). Then the map c: X x Y x Y —
[0, 00) with the property c(x,y,y) =0 for all x € X and y € Y will be called a loss function.

Note that we require c to be a nonnegative function. This means that we will never
get a payoff from an extra good prediction. If the latter was the case, we could
always recover non-negativity (provided the loss is bounded from below), by
using a simple shift operation (possibly depending on x). Likewise we can always
satisfy the condition that exact predictions (f(x) = y) never cause any loss. The
advantage of these extra conditions on ¢ is that we know that the minimum of the
loss is 0 and that it is obtainable, at least for a given x, y.

Next we will formalize different kinds of loss, as described informally in the
introduction of the chapter. Note that the incurred loss is not always the quantity
that we will attempt to minimize. For instance, for algorithmic reasons, some loss
functions will prove to be infeasible (the binary loss, for instance, can lead to NP-
hard optimization problems [367]). Furthermore, statistical considerations such as
the desire to obtain confidence levels on the prediction (Section 3.3.1) will also
influence our choice.

3.1.1 Binary Classification

The simplest case to consider involves counting the misclassification error if pat-
tern x is classified wrongly we incur loss 1, otherwise there is no penalty.:

0 ify=f(x)

(3.1)
1 otherwise

C(xa Y, f(x)) = {



