
2 Kernels

In Chapter 1, we described how a kernel arises as a similarity measure that can
be thought of as a dot product in a so-called feature space. We tried to provide
an intuitive understanding of kernels by introducing them as similarity measures,
rather than immediately delving into the functional analytic theory of the classes
of kernels that actually admit a dot product representation in a feature space.
In the present chapter, we will be both more formal and more precise. We will

study the class of kernels k that correspond to dot products in feature spaces� via
a map Φ,

Φ : ���

x �� x :� Φ(x)� (2.1)

that is,

k(x� x�) � �Φ(x)�Φ(x�)� � (2.2)

Regarding the input domain �, we need not make assumptions other than it being
a set. For instance, we could consider a set of discrete objects, such as strings.
A natural question to ask at this point is what kind of functions k(x� x�) admit a

representation of the form (2.2); that is, whether we can always construct a dot
product space � and a map Φ mapping into it such that (2.2) holds true. WeOverview
shall begin, however, by trying to give some motivation as to why kernels are at
all useful, considering kernels that compute dot products in spaces of monomial
features (Section 2.1). Following this, we move on to the questions of how, given
a kernel, an associated feature space can be constructed (Section 2.2). This leads to
the notion of a Reproducing Kernel Hilbert Space, crucial for the theory of kernel
machines. In Section 2.3, we give some examples and properties of kernels, and in
Section 2.4, we discuss a class of kernels that can be used as dissimilarity measures
rather than as similarity measures.
The chapter builds on knowledge of linear algebra, as briefly summarized inPrerequisites

Appendix B. Apart from that, it can be read on its own; however, readers new to
the field will profit from first reading Sections 1.1 and 1.2.



26 Kernels

2.3 Examples and
Properties of Kernels

2.4 Conditionally Positive
Definite Kernels

2.2.4, 2.2.5 Mercer
Representation

2.2.2, 2.2.3 RKHS
Representation

Definite Kernels
2.2.1 Positive2.1 Polynomial

Kernels

2.2.6, 2.2.7 Data
Dependent
Representation

2.1 Product Features

In this section, we think of � as a subset of the vector space � N , (N � � ), endowed
with the canonical dot product (1.3).
Suppose we are given patterns x � � where most information is contained in

the dth order products (so-called monomials) of entries [x] j of x,Monomial
Features

[x] j1 � [x] j2 � � � [x] jd � (2.3)

where j1� � � � � jd � �1� � � � �N�. Often, these monomials are referred to as product
features. These features form the basis of many practical algorithms; indeed, there
is a whole field of pattern recognition research studying polynomial classifiers [484],
which is based on first extracting product features and then applying learning
algorithms to these features. In other words, the patterns are preprocessed by
mapping into the feature space � of all products of d entries. This has proven
quite effective in visual pattern recognition tasks, for instance. To understand the
rationale for doing this, note that visual patterns are usually represented as vectors
whose entries are the pixel intensities. Taking products of entries of these vectors
then corresponds to taking products of pixel intensities, and is thus akin to taking
logical “and” operations on the pixels. Roughly speaking, this corresponds to the
intuition that, for instance, a handwritten “8” constitutes an eight if there is a top
circle and a bottom circle. With just one of the two circles, it is not half an “8,” but
rather a “0.” Nonlinearities of this type are crucial for achieving high accuracies in
pattern recognition tasks.
Let us take a look at this feature map in the simple example of two-dimensional

patterns, for which � � �
2 . In this case, we can collect all monomial feature

extractors of degree 2 in the nonlinear map

Φ : � 2 �� � �
3
� (2.4)

([x]1� [x]2) �� ([x]21� [x]
2
2� [x]1[x]2)� (2.5)

This approach works fine for small toy examples, but it fails for realistically sized


