Mathematical Prerequisites

minimum of

$$R(\mathbf{v}) := \frac{\langle \mathbf{v}, A\mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle}.$$
(B.57)

The minimizer of *R* is an eigenvector with eigenvalue λ_{\min} . Likewise, the largest eigenvalue and its corresponding eigenvector can be found by maximizing *R*.

Functions $f: I \to \mathbb{R}$, where $I \subset \mathbb{R}$, can be defined on symmetric matrices *A* with eigenvalues in *I*. To this end, we diagonalize *A* and apply *f* to all diagonal elements (the eigenvalues).

Since a symmetric matrix is positive definite if and only if all its eigenvalues are nonnegative, we may choose $f(x) = \sqrt{x}$ to obtain the unique *square root* \sqrt{A} of a positive definite matrix *A*.

Many statements about matrices generalize in some form to operators on spaces of arbitrary dimension; for instance, Mercer's theorem (Theorem 2.10) can be viewed as a generalized version of a matrix diagonalization, with eigenvectors (or eigenfunctions) ψ_i satisfying $\int_{\mathcal{X}} k(x, x') \psi_i(x') d\mu(x') = \lambda_i \psi_i(x)$.

B.3 Functional Analysis

Functional analysis combines concepts from linear algebra and analysis. Consequently, it is also concerned with questions of convergence and continuity. For a detailed treatment, cf. [429, 306, 112].

Cauchy Sequence	Definition B.10 (Cauchy Sequence) A sequence $(\mathbf{x}_i)_i := (\mathbf{x}_i)_{i \in \mathbb{N}} = (\mathbf{x}_1, \mathbf{x}_2,)$ in a normed space \mathcal{H} is said to be a Cauchy sequence if for every $\epsilon > 0$, there exists an $n \in \mathbb{N}$ such that for all $n', n'' > n$, we have $ \mathbf{x}_{n'} - \mathbf{x}_{n''} < \epsilon$. A Cauchy sequence is said to converge to a point $\mathbf{x} \in \mathcal{H}$ if $ \mathbf{x}_n - \mathbf{x} \to 0$ as $n \to \infty$.
Banach / Hilbert Space	Definition B.11 (Completeness, Banach Space, Hilbert Space) A space ℋ is called complete <i>if all Cauchy sequences in the space converge.</i> A Banach space <i>is a complete normed space; a</i> Hilbert space <i>is a complete dot product space.</i>
	The simplest example of a Hilbert space (and thus also of a Banach space) is again \mathbb{R}^N . More interesting Hilbert spaces, however, have <i>infinite</i> dimensionality. A number of surprising things can happen in this case. To prevent the nasty ones, we generally assume that the Hilbert spaces we deal with are <i>separable</i> , ¹³ which means that there exists a countable dense subset. A <i>dense subset</i> is a set <i>S</i> such that each element of \mathcal{H} is the limit of a sequence in <i>S</i> . Equivalently, the completion of

586

^{13.} One of the positive side effects of this is that we essentially only have to deal with one Hilbert space: all separable infinite-dimensional Hilbert spaces are equivalent, in a sense that we won't define presently.