B.2 Linear Algebra

$$(AB)_{ij} = \sum_{n=1}^{N} A_{in} B_{nj}, \tag{B.37}$$

Transpose Inverse and Pseudo-Inverse and the transpose $(A^{\top})_{ij} := A_{ji}$.

The *inverse* of a matrix A is written A^{-1} and satisfies $AA^{-1} = A^{-1}A = \mathbf{1}$. The *pseudo-inverse* A^{\dagger} satisfies $AA^{\dagger}A = A$. While every matrix has a pseudo-inverse, not all have an inverse. Those which do are called *invertible* or *nonsingular*, and their inverse coincides with the pseudo-inverse. Sometimes, we simply use the notation A^{-1} , and it is understood that we mean the pseudo-inverse whenever A is not invertible.

B.2.2 Norms and Dot Products

Thus far, we have explained the linear structure of spaces such as the feature space induced by a kernel. We now move on to the *metric* structure. To this end, we introduce concepts of length and angles.

Definition B.5 (Norm) A function $\|\cdot\| : \mathcal{H} \to \mathbb{R}^+_0$ that for all $\mathbf{x}, \mathbf{x}' \in \mathcal{H}$ and $\lambda \in \mathbb{R}$ satisfies

$\ \mathbf{x} + \mathbf{x}'\ $	$\ < \ _{X}$	+	$ \mathbf{x}' ,$	(B.3	38)

$$\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|,\tag{B.39}$$

$$\|\mathbf{x}\| > 0 \text{ if } \mathbf{x} \neq \mathbf{0}, \tag{B.40}$$

Norm is called a norm on \mathcal{H} . If we replace the ">" in (B.40) by " \geq ," we are left with what is called a semi-norm.

Metric Any norm defines a *metric d* via

$$d(\mathbf{x}, \mathbf{x}') := \|\mathbf{x} - \mathbf{x}'\|; \tag{B.41}$$

likewise, any semi-norm defines a *semi-metric*. The (semi-)metric inherits certain properties from the (semi-)norm, in particular the triangle inequality (B.38) and positivity (B.40).

While every norm gives rise to a metric, the converse is not the case. In this sense, the concept of the norm is stronger. Similarly, every *dot product* (to be introduced next) gives rise to a norm, but not vice versa.

Before describing the dot product, we start with a more general concept.

Definition B.6 (Bilinear Form) A bilinear form on a vector space \mathcal{H} is a function

$$Q: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$$
$$(\mathbf{x}, \mathbf{x}') \to Q(\mathbf{x}, \mathbf{x}')$$
(B.42)

with the property that for all $\mathbf{x}, \mathbf{x}', \mathbf{x}'' \in \mathcal{H}$ and all $\lambda, \lambda' \in \mathbb{R}$, we have

$$Q((\lambda \mathbf{x} + \lambda' \mathbf{x}'), \mathbf{x}'') = \lambda Q(\mathbf{x}, \mathbf{x}'') + \lambda' Q(\mathbf{x}', \mathbf{x}''),$$
(B.43)

$$Q(\mathbf{x}^{\prime\prime}, (\lambda \mathbf{x} + \lambda' \mathbf{x}^{\prime})) = \lambda Q(\mathbf{x}^{\prime\prime}, \mathbf{x}) + \lambda' Q(\mathbf{x}^{\prime\prime}, \mathbf{x}^{\prime}).$$
(B.44)