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16.5 Laplacian Processes

All the prior distributions considered so far are data independent priors; in other
words, p( f ) does not depend on X at all. This may not always be the most desirable
choice, thus we now consider data dependent priors distributions, p( f �X). This goes
slightly beyond the commonly used concepts in Bayesian estimation.

Before we go into the technical details, let us give some motivation as to why
the complexity of an estimate can depend on the locations where data occurs, since
we are effectively updating our prior assumptions about f after observing the data
placement. Note that we do not modify our prior assumptions based on the targets
yi, but rather as a result of the distribution of patterns xi: Different input distribu-
tion densities might for instance correspond to different assumptions regarding
the smoothness of the function class to be estimated. For example, it might be
be advisable to favor smooth functions in areas where data are scarce, and allow
more complicated functions where observations abound. We might not care about
smoothness at all in regions where there is little or no chance of patterns occurring:
In the problem of handwritten digit recognition, we do not (and should not) care
about the behavior of the estimator on inputs x looking like faces.

Finally, we might assume a specific distribution of the coefficients of a function
via a data-dependent function expansion; in other words, an expansion of f into
the span of Φ :� �
1� � � � � 
M�, where 
i are functions of the observed data X and
of x. We focus henceforth on the case where M � m and 
i(x) :� k(xi� x).

The specific benefit of this strategy is that it provides us with a correspondence
between linear programming regularization (Section 4.9.2) and weight decay reg-
ularizers (Section 4.9.1), and Bayesian priors over function spaces, by analogy to
regularization in Reproducing Kernel Hilbert Spaces and Gaussian Processes.10

16.5.1 Data Dependent Priors

Recall the reasoning of Section 16.1.3. We obtained (16.11) under the assumption
that X and f are independent random variables. In the following, we repeat the
derivation without this restriction, and obtain

p(Y� f � X)p( f �X)� p(Y� f �X)� (16.87)

and likewise,

p( f �Y� X)p(Y�X)� p(Y� f �X)� (16.88)

Combining these two equations provides us with a modified version of Bayes’
rule, which after solving for p( f �Y� X), reads

p(Y� f � X)p( f �X)� p( f �X�Y)p(Y�X)� (16.89)

10. We thank Carl Edward Rasmussen for discussions and suggestions.


