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16.3 Gaussian Processes 483

Note that even if k happens to be a smooth function (this turns out to be a reason-
able assumption), the actual realizations t(x), as drawn from the Gaussian process,
need not be smooth at all. In fact, they may be even pointwise discontinuous.

Let us have a closer look at the prior distribution resulting from these assump-
tions. The standard setting is � � 0, which implies that we have no prior knowl-
edge about the particular value of the estimate, but assume that small values are
preferred. Then, for a given set of (t(x1)� � � � � t(xm)) �: t, the prior density function
p(t) is given by
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In most cases, we try to avoid inverting K. By a simple substitution,

t� K�� (16.39)

we have � # �(0� K�1), and consequentlyRKHS
Regularization
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Taking logs, we see that this term is identical to Ω[ f ] from the regularization
framework (4.80). This result thus connects Gaussian process priors and estimators
using the Reproducing Kernel Hilbert Space framework: Kernels favoring smooth
functions, as described in Chapters 2, 4, 11, and 13, translate immediately into
covariance kernels with similar properties in a Bayesian context.

16.3.3 Simple Hypotheses

Let us analyze in more detail which functions are considered simple by a Gaussian
process prior. As we know, hypotheses of low complexity correspond to vectors
y for which y�K�1y is small. This is in particular the case for the (normalized)
eigenvectors vi of K with large eigenvalues �i, since

Kvi � �ivi yields v�i K�1vi � ��1
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In other words, the estimator is biased towards solutions with small ��1
i . This

means that the spectrum and eigensystem of K represent a practical means of
actually viewing the effect a certain prior has on the degree of smoothness of the
estimates.

Let us consider a practical example: For a Gaussian covariance kernel (see also
(2.68)),
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where � � 1, and under the assumption of a uniform distribution on [�5� 5], we
obtain the functions depicted in Figure 16.4 as simple base hypotheses for our
estimator. Note the similarity to a Fourier decomposition: This means that the
kernel has a strong preference for slowly oscillating functions.


