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16.2.2 Parametric Approximation of the Posterior Distribution

Instead of replacing p(f|Z) by its mode, we may want to resort to slightly more
sophisticated approximations. A first improvement is to use a normal distribution
N(u, o), with a mean p coincides with the mode of p(f|Z), and to use the second
derivative of —Inp(fuap|Z) for the variance o. This is often referred to as the
Gaussian Approximation. In practice, we set (see for instance [338])

f|Z ~ N(E[f|Z],=7") where = = —97 [In p(f|Z) (16.28)

] |E[f|Z] :
The advantage of such a procedure is that the integrals remain tractable. This is
also one of the reasons why normal distributions enjoy a high degree of popularity
in Bayesian methods. Besides, the normal distribution is the least informative
distribution (largest entropy) among all distributions with bounded variance.

As Figure 16.2 indicates, a single Gaussian may not always be sufficient to cap-
ture the important properties of p(y|X,Y,x). A more elaborate parametric model
ge(f) of p(f|X, Y), such as a mixture of Gaussian densities, can then be used to im-
prove the approximation of (16.15). A common strategy is to resort to variational
methods. The details are rather technical and go beyond the scope of this section.
The interested reader is referred to [274] for an overview, and to [53] for an ap-
plication to the Relevance Vector Machine of Section 16.6. The following theorem
describes the basic idea.

Theorem 16.2 (Variational Approximation of Densities) Denote by f,y random
variables with corresponding densities p(f,y), p(f|y), and p(f). Then for any density
q(f), the following bound holds;

_ p(f,y) B p(fly) p(f,y)
In p(y)—/fln aory At /fln o q(f)dfg/fln c anat. (1629)

Proof We begin with the first equality of (16.29). Since p(f,y) = p(f|y)p(y), we
may decompose

in P oy 4 POW) (16.30)

q(f) q(f)
Additionally, [;In %f‘)y)q(f)df = KL(p(f|y)|la(f)) is the Kullback-Leibler diver-
gence between p(fly) and q(f) [114]. The latter is a nonnegative quantity which
proves the second part of (16.29). ]

The true posterior distribution is usually p(f|y), and q(f) an approximation of it.
The practical advantage of (16.29) isthat L :=1In %q(f)df can often be computed
more easily, at least for simple enough q(f). Furthermore, by maximizing L via a

suitable choice of g, we maximize a lower bound on In p(y).
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