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16.2.2 Parametric Approximation of the Posterior Distribution

Instead of replacing p( f �Z) by its mode, we may want to resort to slightly more
sophisticated approximations. A first improvement is to use a normal distribution
�(�� �), with a mean � coincides with the mode of p( f �Z), and to use the second
derivative of � ln p( fMAP�Z) for the variance �. This is often referred to as the
Gaussian Approximation. In practice, we set (see for instance [338])Gaussian
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E[ f �Z] � (16.28)

The advantage of such a procedure is that the integrals remain tractable. This is
also one of the reasons why normal distributions enjoy a high degree of popularity
in Bayesian methods. Besides, the normal distribution is the least informative
distribution (largest entropy) among all distributions with bounded variance.

As Figure 16.2 indicates, a single Gaussian may not always be sufficient to cap-
ture the important properties of p(y�X�Y� x). A more elaborate parametric model
q	( f ) of p( f �X�Y), such as a mixture of Gaussian densities, can then be used to im-
prove the approximation of (16.15). A common strategy is to resort to variationalVariational

Approximation methods. The details are rather technical and go beyond the scope of this section.
The interested reader is referred to [274] for an overview, and to [53] for an ap-
plication to the Relevance Vector Machine of Section 16.6. The following theorem
describes the basic idea.

Theorem 16.2 (Variational Approximation of Densities) Denote by f � y random
variables with corresponding densities p( f � y)� p( f �y), and p( f ). Then for any density
q( f ), the following bound holds;
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Proof We begin with the first equality of (16.29). Since p( f � y)� p( f �y)p(y), we
may decompose

p( f � y)
q( f )

� ln  p( y)� ln
p( f � y)
q( f )

. (16.30)

Additionally,
�

f ln p( f �y)
q( f ) q( f )d f � KL(p( f �y)
q( f )) is the Kullback-Leibler diver-

gence between p( f �y) and q( f ) [114]. The latter is a nonnegative quantity which
proves the second part of (16.29).

The true posterior distribution is usually p( f �y), and q( f ) an approximation of it.
The practical advantage of (16.29) is that L :� ln p( f �y)

q( f ) q( f )d f can often be computed
more easily, at least for simple enough q( f ). Furthermore, by maximizing L via a
suitable choice of q, we maximize a lower bound on ln p(y).
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