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All these techniques provide nonlinear feature extractors defined on the whole
input space. In other words, they can be evaluated on patterns regardless of
whether these are elements of the training set or not. Some other methods, such as
the LLE algorithm [445] and multidimensional scaling (MDS) [116], are restricted to
the training data. They aim to only provide a lower-dimensional representation of
the training data, which is useful for instance for data visualization.

Williams [598] recently pointed out that when considering the special case
where we only extract features from the training data, Kernel PCA is actually
closely connected to MDS. In a nutshell, MDS is a method for embedding data
into RY, based on pairwise dissimilarities. Consider a situation where the dissim-
ilarities are actually Euclidean distances in RN (N > q). In the simplest variant of
MDS (“classical scaling”), we attempt to embed the training data into RY such that
the squared distances Aizj := ||xi — x;||* between all pairs of points are (on average)
preserved as well as possible. It can be shown from Proposition 14.1 that this is
readily achieved by projecting onto the first g principal components.

In metric MDS, the dissimilarities A;j are transformed by a (nonlinear) function
¢ before the embedding is computed. In this case, the computation of the embed-
ding involves the minimization of a nonlinear “stress” function, which consists of
the sum over all mismatches. Usually, this stress function is minimized using non-
linear optimization methods. This can be avoided for a large class of nonlinearities
¢, however. Williams [598] showed that the metric MDS solution is a by-product
of performing kernel PCA with RBF kernels, k(x;, X;) = ¢(||xi — Xj||) = ¢(A;j).% In
this case, we thus get away with solving an eigenvalue problem.

The second of the aforementioned dimensionality reduction algorithms, LLE,
can also be related to kernel PCA. One can show that one obtains the solution
of LLE by performing kernel PCA on the Gram matrix computed from what we
might call the locally linear embedding kernel. This kernel assesses similarity of two
patterns based on the similarity of the coefficients required to represent the two
patterns in terms of neighboring patterns. For details, see Problem 14.17.

We conclude this section by noting that it has recently been pointed out that one
can also connect kernel PCA to orthogonal series density estimation [200]. The kernel
PCA eigenvalue decomposition provides the coefficients for a truncated density
estimator expansion taking the form py(x) = 3} _; An (2 I, ol (v, @(x))) , where
g is the number of components taken into account, and o' and v are defined (and

4. One way of performing metric MDS is to first apply ¢, and then run classical MDS
on the resulting dissimilarity matrix. An interesting class of nonlinearities is the power
transformation ¢(Ai;) = Af;, where p > 0 ([127], cited after [598]). Provided the original
dissimilarities A;; arise from Euclidean distances, the power transformation generally leads
to a conditionally positive definite matrix (—%qb(Ai,—)z)i,- if and only if © < 1 (cf. (2.81)). The
centered version of this matrix, which is used in MDS, is thus positive definite if and only if
1 <1 (cf. Proposition 2.26). Therefore, it is exactly in these cases that we can run classical
MDS after applying ¢ without running into problems. This answers a problem posed by
[127], for the case of Euclidean dissimilarities.
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